856 resultados para J63 - Turnover
Resumo:
The paper presents a dynamic study of the Spanish labour market which tries to determine if it matches the characteristics of transitional labour markets from a fl exicurity approach. Employment trajectories of Spanish workers during the years 2007-2010 are studied using the Continuous Sample of Working Lives. This period covers the end of the expansion of the Spanish economy and the beginning of the current employment crisis. From the combination of the chosen topic, the approach, and the database used, this is a novel perspective in our country. The article shows evidence of the evolution of the employment and unemployment spells, the Spanish labour market turnover degree, and the diffi culties of some groups for carrying out transition between employment and unemployment. The results obtained show a labour market in which a) transitions have come to a halt, and b) there is high job insecurity.
Resumo:
The somatic JAK2 valine-to-phenylalanine (V617F) mutation has been detected in up to 90% of patients with polycythemia and in a sizeable proportion of patients with other myeloproliferative disorders such as essential thrombocythemia and idiopathic myelofibrosis. Suppressor of cytokine signaling 3 (SOCS3) is known to be a strong negative regulator of erythropoietin (EPO) signaling through interaction with both the EPO receptor (EPOR) and JAK2. We report here that JAK2 V617F cannot be regulated and that its activation is actually potentiated in the presence of SOCS3. Instead of acting as a suppressor, SOCS3 enhanced the proliferation of cells expressing both JAK2 V617F and EPOR. Additionally, although SOCS1 and SOCS2 are degraded in the presence of JAK2 V617F, turnover of SOCS3 is inhibited by the JAK2 mutant kinase and this correlated with marked tyrosine phosphorylation of SOCS3 protein. We also observed constitutive tyrosine phosphorylation of SOCS3 in peripheral blood mononuclear cells (PBMCs) derived from patients homozygous for the JAK2 V617F mutant. These findings suggest that the JAK2 V617F has overcome normal SOCS regulation by hyperphosphorylating SOCS3, rendering it unable to inhibit the mutant kinase. Thus, JAK2 V617F may even exploit SOCS3 to potentiate its myeloproliferative capacity.
Resumo:
Human Papilloma virus E6-associated protein (E6-AP), which is known as an E3 ubiquitin ligase, mediates ubiquitination and subsequent degradation of a series of cellular proteins. In this paper, we identify here trihydrophobin 1 (TH1), an integral subunit of the human negative transcription elongation factor (NELF) complex, as a novel E6-AP interaction protein and a target of E6-AP-mediated degradation. Overexpression of E6-AP results in degradation of TH1 in a dose-dependent manner, whereas knock-down of endogenous E6-AP elevates the TH1 protein level. TH1 protein turnover is substantially faster, compared to controls, in cells that overexpressed E6-AP. Wild-type E6-AP promotes the ubiquitination of TH1, while a catalytically inactive point mutant of E6-AP abolishes its ubiquitination. Furthermore, in vitro ubiquitination assay also demonstrates that TH1 can be ubiquitinated by E6-AP. The degradation is blocked by treatment with proteasome inhibitor MG132. Herein, we provide strong evidence that TH1 is a specific substrate that is targeted for degradation through E6-AP-catalyzed polyubiquitination.
Resumo:
Type III galactosaemia is a hereditary disease caused by reduced activity in the Leloir pathway enzyme, UDP-galactose 4'-epimerase (GALE). Traditionally, the condition has been divided into two forms-a mild, or peripheral, form and a severe, or generalized, form. Recently it has become apparent that there are disease states which are intermediate between these two extremes. Three mutations associated with this intermediate form (S81R, T150M and P293L) were analysed for their kinetic and structural properties in vitro and their effects on galactose-sensitivity of Saccharomyces cerevisiae cells that were deleted for the yeast GALE homologue Gal10p. All three mutations result in impairment of the kinetic parameters (principally the turnover number, k(cat)) compared with the wild-type enzyme. However, the degree of impairment was mild compared with that seen with the mutation (V94M) associated with the generalized form of epimerase deficiency galactosaemia. None of the three mutations tested affected the ability of the protein to dimerize in solution or its susceptibility to limited proteolysis in vitro. Finally, in the yeast model, each of the mutated patient alleles was able to complement the galactose-sensitivity of gal10 Delta cells as fully as was the wild-type human allele. Furthermore, there was no difference from control in metabolite profile following galactose exposure for any of these strains. Thus we conclude that the subtle biochemical and metabolic abnormalities detected in patients expressing these GALE alleles likely reflect, at least in part, the reduced enzymatic activity of the encoded GALE proteins.
Resumo:
Objective: To explore the difficulties experienced by lay-workers, women and health professionals involved in a peer-mentoring programme for first-time mothers living in socially disadvantaged areas. Design: Qualitative study; semi-structured interviews with lay-worker peer-mentoring programme participants at two separate stages of the programme (antenatal and postnatal). Setting: Community based. Participants: 11 women receiving peer-mentoring support (from first hospital antenatal visit to one year postnatal); 11 lay-workers; 2 research midwives. Results: Lay-workers had difficulty initiating contact with women and failure to establish contact affected their morale adversely. They felt that women understood their intended role poorly and attempted to develop relationships with them by sharing personal experiences and offering friendship; women who participated in the programme appreciated this. Developing a peer-mentor relationship was difficult if women lacked interest in the programme or in continuing contact. External influences on peer-mentoring uptake and delivery included family and friends who could prevent or encourage women’s participation and cause difficulties for the lay-worker both in delivering support and arranging follow-up. Lay-workers providing support to women from a different ethnic background experienced difficulties relating to both language and culture: these were perceived to affect peer-mentor relationships adversely. Major personal difficulties for lay-workers related to time constraints in reconciling mentoring requirements with demands of family and other work. Informing midwives of these difficulties helped identify solutions through training and ongoing professional support for the lay-workers. Conclusions: Lay-worker peer support is appreciated by first time mothers but difficulties in initiating contact, developing peer-mentor relationships and external influences such as family, ethnicity and time constraints are relevant to poor uptake and high staff turnover. In developing peer support programmes, awareness of potential difficulties and of how professional support can help resolve these should improve uptake and thus optimise the evaluations of their effectiveness.
Resumo:
The richness and turnover of coastal larval pools set upper limits for biodiversity in coastal systems. For particular local systems, such as embayments, the characteristics of the local larval pool are determined by the relative contributions of locally produced and external larvae. The balance between these sources partially reflects the extent of tidal exchange and is hence related to system size and flushing time. Larvae of benthic marine invertebrates were sampled from 8 bays along the Irish coast to investigate the effect of coastline configuration on the characteristics of the larval pool. Flushing time explained 34.5% of the variability in species richness from a series of daily samples. Many of the potentially relevant environmental variables are correlated, limiting the potential for individual variables to be examined in isolation. We therefore used a principal components analysis to describe the major patterns in environmental variability across bays. The second principal component separated bays along a gradient of increasing depth, salinity, tidal range and flushing time. Scores along this component were generally better predictors of the larval pool than single variables, explaining as much as 61.2% of the variation in species richness, diversity and similarity between dates. Deeper bays, with more saline water and longer flushing times, tended to have richer and more diverse larval pools, with a greater consistency in species composition between sample dates. No relationship was found between environmental variables and larval abundance. Our results suggest that flushing time, particularly when in combination with topographic variables, chlorophyll, tidal range and salinity, may be a useful predictor for the richness and turnover of local larval pools.
Resumo:
Hull fouling is thought to have been the vector of introduction for many algal species. We studied ships arriving at a Mediterranean harbour to clarify the present role of commercial cargo shipping in algal introductions. A total of 31 macroalgal taxa were identified from 22 sampled hulls. The majority of records (58%) were of species with a known cosmopolitan geographical distribution. Due to a prevalence of cosmopolitan species and a high turnover of fouling communities, species composition of assemblages did not appear to be influenced by the area of origin, length of ship or age of coating. In the light of the present results, hull fouling on standard trading commercial vessels does not seem to pose a significant risk for new macroalgal species introductions. However, a high proportion of non-cosmopolitan species found on a ship with non-toxic coating may modify this assessment, especially in the light of the increasing use of such coatings and the potential future changes in shipping routes.
Resumo:
Success rates of reintroduction programs are low, often owing to a lack of knowledge of site-specific ecological requirements. A reintroduction program of European roe deer (Capreolus capreolus (L., 1758)) in a dry Mediterranean region in Israel provides an opportunity to study the bottleneck effect of water requirements on a mesic-adapted species. Four does were hand-reared and released in a 10 ha site consisting of an early succession scrubland and a mature oak forest. We measured daily energy expenditure (DEE) and water turnover (WTO) using the doubly labeled water technique during summer and winter. DEE was similar in the summer and winter, but there was a significant difference in WTO and in the source of gained water. In winter, WTO was 3.3 L/day, of which 67% was obtained from vegetation. In summer, WTO dropped to 2.1 L/day, of which only 20% was obtained from the diet and 76% was gained from drinking. When the water source was moved to a nonpreferred habitat, drinking frequency dropped significantly, but water consumption remained constant. In a dry Mediterranean environment, availability of free water is both a physiological contraint and a behavioral constraint for roe deer. This study demonstrates the importance of physiological and behavioral feasibility studies for reintroduction programs.
Resumo:
Winter is an energetically stressful period for small mammals as increasing demands for thermoregulation are often coupled with shortages of food supply. In sub-tropical savannah, Hottentot golden moles (Ambysomus hottentottus longiceps) forage throughout the year and for lone periods of each day. This may enable them to acquire sufficient resources from an insectivorous prey base that is both widely dispersed and energetically costly to obtain. However, they also inhabit much cooler regions; how their energy budgets are managed in these areas is unknown. We measured the daily energy expenditure (DEE), resting metabolic rate (RMR) and water turnover (WTO) of free-living golden moles during both winter and summer at high altitude (1500 m). We used measurements of deuterium dilution to estimate body fat during these two periods. DEE, WTO and body mass did not differ significantly between seasons. However, RMR values were higher during the winter than the summer and, in the latter case were also lower than allometric predictions. Body fat was also higher during the winter. Calculations show that during the winter they may restrict activity to shorter, more intense periods. This, together with an increase in thermal insulation, might enable them to survive the cold. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
The common spiny mouse Acomys cahirinus, of Ethiopian origin, has a widespread distribution across arid, semi-arid and Mediterranean parts of the Arabian sub-region. We compared the daily energy expenditure (DEE), water turnover NTTO) and sustained metabolic scope (SusMS = DEE/resting metabolic rate) of two adjacent populations during the winter. Mice were captured from North- and South- facing slopes (NFS and SFS) of the same valley, comprising mesic and xeric habitats, respectively. Both DEE and SusMS winter values were greater in NFS than SFS mice and were significantly greater than values previously measured in the summer for these two populations in the same environments. However, WTO values were consistent with previously established values and were not significantly different from allometric predictions for desert eutherians. We suggest that physiological plasticity in energy expenditure, which exists both temporally and spatially, combined with stable WTO, perhaps reflecting a xeric ancestry, has enabled A. cahirinus to invade a wide range of habitats. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
1. A comparison was made of the daily energy expenditure (DEE), resting metabolic rate (RMR) and water turnover (WTO) of two populations of Common Spiny Mice Acomys cahirinus from north- and south-facing slopes (NFS and SFS) of the same valley, which represented 'Mediterranean' and 'desert' habitats, respectively.
Resumo:
Data from a hierarchical study of four Zostera marina beds in Wales were used to identify the spatial scales of variation in epiphyte assemblages. There were significant within and among bed differences in assemblage structure. The differences in assemblage structure with spatial scale generally persisted when species identifications were aggregated into functional groups. There was also significant within and among bed variability in Zostera density and average length. Local variations in Zostera canopy variables at the quadrat scale (total leaf length, average leaf length and leaf density per quadrat) were not related to epiphyte species richness nor to the structure of the assemblage. In contrast, individual leaf length was significantly related to species richness in two of the beds and the structure of epiphyte assemblages was always related to individual leaf lengths. The absence of links between quadrat scale measurements of canopy variables and assemblage structure may reflect the high turnover of individual Zostera leaves. Experimental work is required to discriminate further between the potential causes of epiphyte assemblage variation within and between beds. No bed represented a refuge where a rare species was abundant. If a species was uncommon at the bed scale, it was also uncommon in beds where it occurred. The heterogeneous assemblages found in this study suggest that a precautionary approach to conservation is advisable.
Resumo:
Chemical modification of proteins by reactive oxygen species affects protein structure, function and turnover during aging and chronic disease. Some of this damage is direct, for example by oxidation of amino acids in protein by peroxide or other reactive oxygen species, but autoxidation of ambient carbohydrates and lipids amplifies both the oxidative and chemical damage to protein and leads to formation of advanced glycoxidation and lipoxidation end-products (AGE/ALEs). In previous work, we have observed the oxidation of methionine during glycoxidation and lipoxidation reactions, and in the present work we set out to determine if methionine sulfoxide (MetSO) in protein was a more sensitive indicator of glycoxidative and lipoxidative damage than AGE/ALEs. We also investigated the sites of methionine oxidation in a model protein, ribonuclease A (RNase), in order to determine whether analysis of the site specificity of methionine oxidation in proteins could be used to indicate the source of the oxidative damage, i.e. carbohydrate or lipid. We describe here the development of an LC/MS/MS for quantification of methionine oxidation at specific sites in RNase during glycoxidation or lipoxidation by glucose or arachidonate, respectively. Glycoxidized and lipoxidized RNase were analyzed by tryptic digestion, followed by reversed phase HPLC and mass spectrometric analysis to quantify methionine and methionine sulfoxide containing peptides. We observed that: (1) compared to AGE/ALEs, methionine sulfoxide was a more sensitive biomarker of glycoxidative or lipoxidative damage to proteins; (2) regardless of oxidizable substrate, the relative rate of oxidation of methionine residues in RNase was Met(29) > Met(30) > Met(13), with Met(79) being resistant to oxidation; and (3) arachidonate produced a significantly greater yield of MetSO, compared to glucose. The methods developed here should be useful for assessing a protein's overall exposure to oxidative stress from a variety of sources in vivo. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
Throughout Earth's history there have been temporal and spatial variations in the amount of visible and ultraviolet radiation received by ecosystems. This paper examines if temporal changes in these forms of energy receipt could have influenced the tempo and mode of plant diversity and speciation, focusing in particular upon Cenozoic time-scales. Evidence for changing patterns of plant diversity and speciation apparent in various fossil records and molecular phylogenies are considered alongside calculated changes in thermal and solar ultraviolet energy (specifically UV-B) over the past 50 Myr. We suggest that changes in thermal energy influx (amount and variability) affected the tempo of evolution through its influence upon community dynamics (e.g. population size, diversity, turnover, extinctions). It was not only the amount of thermal energy but also variability in its flux that may have influenced these processes, and ultimately the rate of diversification. We suggest that variations in UV-B would have influenced the mode and tempo of speciation through changes to genome stability during intervals of elevated UV-B. We argue, therefore, that although variability in thermal energy and UV-B fluxes through time may lead to the same end-point (changing the rate of diversification), the processes responsible are very different and both need to be considered when linking evolutionary processes to energy flux.
Resumo:
The work presented in this article shows the power of the variable temperature, in-situ FT-IR spectroscopy system developed in Newcastle with respect to the investigation of fuel cell electro-catalysis. On the Ru(0001) electrode surface, CO co-adsorbs with the oxygen-containing adlayers to form mixed [CO+(2x2)-O(H)] domains. The electro-oxidation of the Ru(0001) surface leads to the formation of active (1x1)-O(H) domains, and the oxidation of adsorbed CO then takes place at the perimeter of these domains. At 20 degrees C, the adsorbed CO is present as rather compact islands. In contrast, at 60 degrees C, the COads is present as a relatively looser and weaker adlayer. Higher temperature was also found to facilitate the surface diffusion and oxidation of COads. No dissociation or electro-oxidation of methanol was observed at potentials below approximately 950mV; however, the Ru(0001) surface at high anodic potentials was observed to be very active. On both Pt and PtRu nanoparticle surfaces, only one linear bond CO adsorbate was formed from methanol adsorption, and the PtRu surface significantly promoted both methanol dissociative adsorption to CO and its further oxidation to CO2. Increasing temperature from 20 to 60 degrees C significantly facilitates the methanol turnover to CO2.