1000 resultados para Isotope Age
Resumo:
We report an optimized method for extracting neodymium (Nd) from fossil fish teeth with a single-stage column (125 µl stem volume; LN Resin, Eichrom Industries, Darien Illinois) for isotopic analysis by multi-collector inductively coupled mass spectrometry (MC-ICMPS). Three reference materials (basalt: BCR-2, BHVO-2; phosphate: fossil bone composite) and splits of fossil fish teeth samples previously processed with existing two-stage column methods were processed using the single-stage column method. 143Nd/144Nd values of reference materials agree within error with published values, and the values for fish teeth correspond with sample splits processed with two-stage columns. Precision to ± ~0.23 epsilon-Nd was achieved for 30 ng Nd samples of reference materials, and Nd isotope measurements of fossil fish tooth sample replicates as small as 7 ng Nd were reproducible within long term instrumental uncertainty. We demonstrate the utility of the new method with the first high resolution Nd isotope record spanning the ~40.0 Ma middle Eocene Climatic Optimum, which shows an excursion of 0.65 epsilon-Nd during the peak warming at the study site (Ocean Drilling Program Leg 119, Site 738; 30 kyr sample spacing from 40.3 to 39.6 Ma). LN Resin is already used in standard methods for separating Nd, and Nd isotopes are routinely measured by MC-ICPMS with high efficiency inlet systems. Our innovation is a single, small volume LN Resin column for Nd separation. The streamlined approach results in a 10X increase in sample throughput.
Resumo:
Global cooling and the development of continental-scale Antarctic glaciation occurred in the late middle Eocene to early Oligocene (~38 to 28 million years ago), accompanied by deep-ocean reorganization attributed to gradual Antarctic Circumpolar Current (ACC) development. Our benthic foraminiferal stable isotope comparisons show that a large d13C offset developed between mid-depth (~600 meters) and deep (>1000 meters) western North Atlantic waters in the early Oligocene, indicating the development of intermediate-depth d13C and O2 minima closely linked in the modern ocean to northward incursion of Antarctic Intermediate Water. At the same time, the ocean's coldest waters became restricted to south of the ACC, probably forming a bottom-ocean layer, as in the modern ocean. We show that the modern four-layer ocean structure (surface, intermediate, deep, and bottom waters) developed during the early Oligocene as a consequence of the ACC.
Resumo:
The interval of time represented by marine isotope stages 11 and 12 (~360-470 ka) contains what may be the most extreme glacial and interglacial climate conditions of the Late Pleistocene. It has been suggested that sea level rose by ~160 m at the termination of glacial stage 12. This is 30% greater than the sea level rise that followed the most recent glacial maximum. There have been few detailed studies of the unique conditions that existed during the stage 11-12 time period because of the lack of high-quality core material. This problem has been addressed by the collection of high deposition rate cores from sediment drifts in the western North Atlantic during Ocean Drilling Project Leg 172. Benthic foraminiferal d13C data from cores collected between ~4600 and 1800 m were used to reconstruct bathymetric gradients in deep and intermediate water properties for selected time slices during this glacial-interglacial cycle. During glacial stage 12, the deep western North Atlantic was filled by a water mass that was more nutrient-enriched than modern Antarctic Bottom Water. Above 2000 m, a more nutrient-depleted water mass existed during this glacial stage. Such an intermediate water mass has been described for more recent glacial periods and presumably forms in a more proximate region of the North Atlantic. Interglacial stage 11 water mass properties closely resemble those of the present-day western North Atlantic. A nutrient-depleted water mass (d13C of 0.75-1.0 per mil), similar to modern North Atlantic Deep Water existed between 3500 and 2000 m. This was underlain by a water mass with lower d13C values (<0.75 per mil) that probably was derived from a southern source. Using Leg 172 data, along with previously published results from the Atlantic and Pacific oceans, we estimate a mean global d13C change of 0.95 per mil from stage 12 to stage 11. This is twice the whole ocean ?13C change reported for the transition from the last glacial maximum to the Holocene.
Resumo:
Determining the response of sites within the Arctic Circle to long-term climatic change remains an essential pre-requisite for assessing the susceptibility of these regions to future global warming and Arctic amplification. To date, existing records from North East Russia have demonstrated significant spatial variability across the region during the late Quaternary. Here we present diatom d18O and d30Si data from Lake El'gygytgyn, Russia, and suggest environmental changes that would have impacted across West Beringia from the Last Glacial Maximum to the modern day. In combination with other records, the results raise the potential for climatic teleconnections to exist between the region and sites in the North Atlantic. The presence of a series of 2-3 per mil decreases in d18Odiatom during both the Last Glacial and the Holocene indicates the sensitivity of the region to perturbations in the global climate system. Evidence of an unusually long Holocene thermal maximum from 11.4 ka BP to 7.6 ka BP is followed by a cooling trend through the remainder of the Holocene in response to changes in solar insolation. This is culminated over the last 900 years by a significant decrease in d18Odiatom of 2.3 per mil, which may be related to a strengthening and easterly shift of the Aleutian Low in addition to possible changes in precipitation seasonality.
Resumo:
High-precision uranium-thorium mass spectrometric chronology and 18O-13C isotopic analysis of speleothem calcite from Cold Water Cave in northeast Iowa have been used to chart mid-Holocene climate change. Significant shifts in d18O and d13C isotopic values coincide with well-documented Holocene vegetation changes. Temperature estimates based on 18O/16O ratios suggest that the climate warmed rapidly by about 3°C at 5900 years before present and then cooled by 4°C at 3600 years before present. Initiation of a gradual increase in ?d13C at 5900 years before present suggests that turnover of the forest soil biomass was slow and that equilibrium with prairie vegetation was not attained by 3600 years before present.
Resumo:
Antarctic Intermediate Water (AAIW) and Subantarctic Mode Water (SAMW) are the main conduits for the supply of dissolved silicon (silicic acid) from the deep Southern Ocean (SO) to the low-latitude surface ocean and therefore have an important control on low-latitude diatom productivity. Enhanced supply of silicic acid by AAIW (and SAMW) during glacial periods may have enabled tropical diatoms to outcompete carbonate-producing phytoplankton, decreasing the relative export of inorganic to organic carbon to the deep ocean and lowering atmospheric pCO2. This mechanism is known as the "silicic acid leakage hypothesis" (SALH). Here we present records of neodymium and silicon isotopes from the western tropical Atlantic that provide the first direct evidence of increased silicic acid leakage from the Southern Ocean to the tropical Atlantic within AAIW during glacial Marine Isotope Stage 4 (~60-70 ka). This leakage was approximately coeval with enhanced diatom export in the NW Atlantic and across the eastern equatorial Atlantic and provides support for the SALH as a contributor to CO2 drawdown during full glacial development.
Resumo:
We examine whether or not a relationship exists between the late Miocene carbon isotope shift (~7.6-6.6 Ma) and marine productivity at four sites from the Indian and Pacific Oceans (Ocean Drilling Program Sites 721, 1146, 1172, and 846). We use a multiproxy approach based on benthic foraminiferal accumulation rates, elemental ratios, and dissolution indices, and we compare these data to benthic foraminiferal d13C values measured on the same samples. Although some of these sites have been targeted previously in studies of either the late Miocene/early Pliocene "biogenic bloom" (Sites 721 and 846) or the late Miocene carbon isotope shift (Site 1172), our records are the first to establish paired proxy records of carbon isotopes and paleoproductivity allowing a direct assessment of a potential link. Our results indicate that at all sites, productivity increased sometime during the d13C shift; at three sites (721, 1146, and 846), productivity increased at the beginning of the shift. The correlation coefficients derived from linear regression between micropaleontologically derived productivity and foraminiferal d13C values are relatively high during the time interval containing the late Miocene d13C shift (and statistically significant at three of the sites). Carbon flux and isotope mass balance considerations illustrate that transfer of organic matter between the terrestrial and marine reservoirs together with enhanced oceanic upwelling best approximates observed changes in carbon isotope records and paleoproductivity. We note that long-term trend in the Site 846 paleoproductivity record can be correlated to the long-term trend in the Site 848 eolian flux reconstructions of Hovan (1995, doi:10.2973/odp.proc.sr.138.132.1995) hinting at a link between strengthened wind regime and productivity during the late Miocene.
Resumo:
A multiproxy approach including the use of stable isotopes, magnetic characterization analyses, and organic geochemistry has been adopted to consider factors such as productivity and terrigenous input over the past 1.5 m.y. at two areas off the western coast of Africa. These factors can, in turn, be used to consider variability in ocean circulation and upwelling in addition to changes in climate on the African continent. In particular, studies focused on the influence of glacial-interglacial cycles and evidence for the mid-Pleistocene revolution (MPR), a complex change in climate that occurred at ~1 Ma. A comparison of the records from the two areas drilled during Ocean Drilling Program Leg 175, the Congo Basin, at a latitude of 5°S (Holes 1076A and 1077A), and the Walvis Ridge, at 17°S (Hole 1081A), demonstrates that these sites are affected by different localized factors. The sites in the Congo Basin are strongly influenced by freshwater and sediment from the Congo River, whereas the site at the Walvis Ridge is located in the center of oceanic upwelling and contains a more marine signal. Evidence also suggests that the two sites responded differently to both long- and short-term climatic variations. In particular, the response at the Walvis Ridge to the MPR occurred over an extended period, from 1.1 to 0.8 Ma, and was associated with a change in the dominant source of terrigenous input to the site in conjunction with a change in the productivity signal. In the Congo Basin, the response to the MPR was more rapid, occurring between 0.9 and 0.8 Ma. During this period, the influence of the Congo River became significant. However, productivity records only began to respond toward the end of this interval, at 0.8 Ma.
Resumo:
The ice cap on Berkner Island is grounded on bedrock within the Filchner-Ronne Ice Shelf and is, therefore, expected to be a well-suited place to retrieve long-term ice-core records reflecting the environmental situation of the Weddell Sea region. Shallow firn cores were drilled to 11 m at the two main summits of Berkner Island and analysed in high depth resolution for electrical d.c. conductivity (ECM), stable isotopes, chloride, sulphate, nitrate and methane-sulphonate (MSA). From the annual layering of dD and non-sea-salt (nss) sulphate, a mean annual snow accumulation of 26.6 cm water at the north dome and 17.4 cm water at the south dome are obtained. As a result of ineffective wind scouring indicated by a relatively low near-surface snow density, regular annual cycles are found for all species at least in the upper 4-5 m. Post depositional changes are responsible for a substantial decrease of the seasonal dD and nitrate amplitude as well as for considerable migration of the MSA signal operating below a depth of 3-4 m. The mean chemical and isotopic firn properties at the south dome correspond to the situation on the Filchner-Ronne Ice shelf at a comparable distance to the coast, whereas the north dome is found to be more influenced by maritime air masses. Persistent high sea-salt levels in winter snow at Berkner Island heavily obscure the determination of nss sulphate probably due to sulphate fractionation in the Antartic sea-salt aerosols. Estimated time-scales predict ages at 400 m depth to be ca. 2000 years for the north and ca. 3000 years for the south dome. Pleistocene ice is expected in the bottom 200 and 300 m, respectively.