947 resultados para Irrigation water source
Resumo:
Several methods and approaches for measuring parameters to determine fecal sources of pollution in water have been developed in recent years. No single microbial or chemical parameter has proved sufficient to determine the source of fecal pollution. Combinations of parameters involving at least one discriminating indicator and one universal fecal indicator offer the most promising solutions for qualitative and quantitative analyses. The universal (nondiscriminating) fecal indicator provides quantitative information regarding the fecal load. The discriminating indicator contributes to the identification of a specific source. The relative values of the parameters derived from both kinds of indicators could provide information regarding the contribution to the total fecal load from each origin. It is also essential that both parameters characteristically persist in the environment for similar periods. Numerical analysis, such as inductive learning methods, could be used to select the most suitable and the lowest number of parameters to develop predictive models. These combinations of parameters provide information on factors affecting the models, such as dilution, specific types of animal source, persistence of microbial tracers, and complex mixtures from different sources. The combined use of the enumeration of somatic coliphages and the enumeration of Bacteroides-phages using different host specific strains (one from humans and another from pigs), both selected using the suggested approach, provides a feasible model for quantitative and qualitative analyses of fecal source identification.
Resumo:
The objective of this work was to evaluate changes in the photosynthetic photon flux density (PPFD) interception efficiency and PPFD extinction coefficient for maize crop subjected to different soil tillage systems and water availability levels. Crops were subjected to no-tillage and conventional tillage systems combined with full irrigation and non-irrigation treatments. Continuous measurements of transmitted PPFD on the soil surface and incoming PPFD over the canopy were taken throughout the crop cycle. Leaf area index and soil water potential were also measured during the whole period. Considering a mean value over the maize cycle, intercepted PPFD was higher in the conventional tillage than in the no-tillage system. During the initial stages of plants, intercepted PPFD in the conventional tillage was double the PPFD interception in the no-tillage treatment. However, those differences were reduced up to the maximum leaf area index, close to tasseling stage. The lowest interception of PPFD occurred in the conventional tillage during the reproductive period, as leaf senescence progressed. Over the entire crop cycle, the interception of PPFD by the non-irrigated plants was about 20% lower than by the irrigated plants. The no-tillage system reduced the extinction coefficient for PPFD, which may have allowed a higher penetration of solar radiation into the canopy
Leaf miner incidence in coffee plants under different drip irrigation regimes and planting densities
Resumo:
The objective of this work was to evaluate the effect of different drip irrigation regimes and planting densities on the incidence of the leaf miner, Leucoptera coffeella, in arabica coffee plants for one year. The experiment was carried out in 2008, in a complete randomized block design, in a split-plot in time arrangement, with four replicates. The treatments consisted of four drip irrigation regimes - soil water balance, irrigations at 20 and 60 kPa soil tensions, and a nonirrigated treatment -, which were distributed at three plant densities: 2, 500, 5, 000, and 10, 000 plants per hectare. The evaluations were made on a monthly basis between January and December 2008. The highest pest occurrence period was from August to November, a season with low-air relative humidity preceded by a drought period. Irrigated coffee plants showed an incidence of intact mines 2.2 times lower than that of nonirrigated plants. Irrigation and increasing of plant density contribute to the reduction of coffee leaf miner occurrence.
Resumo:
Abstract: The objective of this work was to evaluate the feasibility of using physiological parameters for water deficit tolerance, as an auxiliary method for selection of upland rice genotypes. Two experiments - with or without water deficit - were carried out in Porangatu, in the state of Goiás, Brazil; the water deficit experiment received about half of irrigation that was applied to the well-watered experiment. Four genotypes with different tolerance levels to water stress were evaluated. The UPLRI 7, B6144F-MR-6-0-0, and IR80312-6-B-3-2-B genotypes, under water stress conditions, during the day, showed lower stomatal diffusive resistance, higher leaf water potential, and lower leaf temperature than the control. These genotypes showed the highest grain yields under water stress conditions, which were 534, 601, and 636 kg ha-1, respectively, and did not differ significantly among them. They also showed lower drought susceptibility index than the other genotypes. 'BRS Soberana' (susceptible control) was totally unproductive under drought conditions. Leaf temperature is a easy-read parameter correlated to plant-water status, viable for selecting rice genotypes for water deficit tolerance.
Resumo:
The objective of this work was to evaluate peduncle and fruit yield in clone MS 076 and in a clonal population of drip-irrigated, early dwarf cashew trees propagated by layering, in six cropping seasons. In order to meet the increased water requirements of the crop resulting from plant growth and development, irrigation during the dry season was performed daily according to the following water regime: 15 min/plant/day during the 1st year, 30 min/plant/day during the 2nd year, 45 min/plant/day during the 3rd year and 60 min/plant/day during all subsequent years. Water was supplied by one drip emitter/plant, at an (adjustable) flow rate of 36 L/h.The research was carried out in Fortaleza-Ceará, Brazil, and a random block design was utilized, with five replicates and split-plots. The clones were assigned to plots and the cropping seasons were considered as subplots. The clonal population was superior to the clone only with regard to number of nut shells (NNS), and solely in the first season. The clone was superior to the population as to NNS and peduncle yield (PY) in the second season, and also with regard to the three evaluated traits - NNS, PY, and nut shell yield, in the last three cropping seasons.
Resumo:
Several methods and approaches for measuring parameters to determine fecal sources of pollution in water have been developed in recent years. No single microbial or chemical parameter has proved sufficient to determine the source of fecal pollution. Combinations of parameters involving at least one discriminating indicator and one universal fecal indicator offer the most promising solutions for qualitative and quantitative analyses. The universal (nondiscriminating) fecal indicator provides quantitative information regarding the fecal load. The discriminating indicator contributes to the identification of a specific source. The relative values of the parameters derived from both kinds of indicators could provide information regarding the contribution to the total fecal load from each origin. It is also essential that both parameters characteristically persist in the environment for similar periods. Numerical analysis, such as inductive learning methods, could be used to select the most suitable and the lowest number of parameters to develop predictive models. These combinations of parameters provide information on factors affecting the models, such as dilution, specific types of animal source, persistence of microbial tracers, and complex mixtures from different sources. The combined use of the enumeration of somatic coliphages and the enumeration of Bacteroides-phages using different host specific strains (one from humans and another from pigs), both selected using the suggested approach, provides a feasible model for quantitative and qualitative analyses of fecal source identification.
Resumo:
Which treatments are used for dysmenorrhea and with what reported outcome? A questionnaire was sent to 2400 students and apprentices, following the "retrospective treatment-outcome" method. The response rate was 22%. Most frequent treatments used are ibuprofene (53%), paracetamol (51%), hormonal contraception (40%), hot-water bottle (or hot pad) (35%), food supplements or medicinal plants (23%). Physicians only discuss a tiny proportion of dysmenorrhea treatment in their consultation, because it is mostly a matter of self-treatment, with the family as the source of information in 80% of the cases. Rather surprising because not mentioned in most official guidelines, hot-water bottle (or hot pad) appears as the treatment followed by the best reported outcome (satisfactory in 92% of users).
Resumo:
Intravascular brachytherapy with beta sources has become a useful technique to prevent restenosis after cardiovascular intervention. In particular, the Beta-Cath high-dose-rate system, manufactured by Novoste Corporation, is a commercially available 90Sr 90Y source for intravascular brachytherapy that is achieving widespread use. Its dosimetric characterization has attracted considerable attention in recent years. Unfortunately, the short ranges of the emitted beta particles and the associated large dose gradients make experimental measurements particularly difficult. This circumstance has motivated the appearance of a number of papers addressing the characterization of this source by means of Monte Carlo simulation techniques.
Resumo:
While the supply of water to dry or arid mountain regions has long been a major challenge, the on-going processes of climatic and socio-economic change currently affecting the hydrosystems of the Alps raise the spectre of renewed pressure on water resources and possible local shortages. In such a context, questions relating to fair distribution of water are all the more sensitive given the tendency to neglect the social dimension of sustainability. The present paper makes both a conceptual and empirical contribution to this debate by analysing a system of distribution that has a long experience of water scarcity management: the community governance models traditionally linked to the irrigation channels, or bisses, typical of the Swiss Alpine canton of Valais. More specifically, we evaluate these models in terms of accessibility and equity, characteristics that we use to operationalize the notion of 'fair distribution'. We examine these dimensions in three case studies with a view to highlighting the limitations of the aforementioned models. Indeed, despite their cooperative and endogenous nature, they tend to not only exclude certain members of the population, but also to reproduce rather than reduce social inequalities within the community. In general, these results challenge the rosy picture generally found in the literature relating to these community governance models.
Resumo:
The velocity of dripline flushing in subsurface drip irrigation (SDI) systems affects system design, cost, management, performance, and longevity. A 30‐day field study was conducted at Kansas State University to analyze the effect of four targeted flushing velocities (0.23, 0.30, 0.46, and 0.61 m/s) for a fixed 15 min duration of flushing and three flushing frequencies (no flushing or flushing every 15 or 30 days) on SDI emitter discharge and sediments within the dripline and removed in the flushing water. At the end of the field experiment (371 h), the amount of solids carried away by the flushing water and retained in every lateral were determined as well as laboratory determination of emitter discharge for every single emitter within each dripline. Greater dripline flushing velocities, which also resulted in greater flushing volumes, tended to result in greater amounts of solids in the flushing water, but the differences were not always statistically significant. Neither the frequency of flushing nor the interaction of flushing frequency and velocity significantly affected the amount of solids in the flushing water. There was a greater concentration of solids in the beginning one‐third of the 90 m laterals, particularly for treatments with no flushing or with slower dripline flushing velocities. As flushing velocity and concurrently flushing volume increased, there was a tendency for greater solids removal and/or more equal distribution within the dripline. At the end of the field study, the average emitter discharge as measured in the laboratory for a total of 3970 emitters was 0.64 L/h. which was significantly less (approximately 2.5%) than the discharge for new and unused emitters. Only six emitters were nearly or fully clogged, with discharges between 0% and 5% of new and unused emitters. Flushing velocity and flushing frequency did not have consistent significant effects on emitter discharge, and those numerical differences that did exist were small (<3%). Emitter discharge was approximately 3% less for the distal ends of the driplines (last 20% of the dripline). Although not a specific factor in the study, the results of solids removals during flushing and solids retention within the different dripline sections suggest that duration of flushing may be a more cost‐effective management option than increasing the dripline flushing velocity through SDI system design. Finally, although microirrigation system components have been improved over the years, the need for flushing to remove solids and reduce clogging potential has not been eliminated
Resumo:
We use an ordered logistic model to empirically examine the factors that explain varying degrees of private involvement in the U.S. water sector through public-private partnerships. Our estimates suggest that a variety of factors help explain greater private participation in this sector. We find that the risk to private participants regarding cost recovery is an important driver of private participation. The relative cost of labor is also a key factor in determining the degree of private involvement in the contract choice. When public wages are high relative to private wages, private participation is viewed as a source of cost savings. We thus find two main drivers of greater private involvement: one encouraging private participation by reducing risk, and another encouraging government to seek out private participation in lowering costs.
LOW COST ANALYZER FOR THE DETERMINATION OF PHOSPHORUS BASED ON OPEN-SOURCE HARDWARE AND PULSED FLOWS
Resumo:
The need for automated analyzers for industrial and environmental samples has triggered the research for new and cost-effective strategies of automation and control of analytical systems. The widespread availability of open-source hardware together with novel analytical methods based on pulsed flows have opened the possibility of implementing standalone automated analytical systems at low cost. Among the areas that can benefit from this approach are the analysis of industrial products and effluents and environmental analysis. In this work, a multi-pumping flow system is proposed for the determination of phosphorus in effluents and polluted water samples. The system employs photometric detection based on the formation of molybdovanadophosphoric acid, and the fluidic circuit is built using three solenoid micropumps. The detection is implemented with a low cost LED-photodiode photometric detection system and the whole system is controlled by an open-source Arduino Uno microcontroller board. The optimization of the timing to ensure the color development and the pumping cycle is discussed for the proposed implementation. Experimental results to evaluate the system behavior are presented verifying a linear relationship between the relative absorbance and the phosphorus concentrations for levels as high as 50 mg L-1.
Assessment of hydrochemical quality of ground water under some urban areas within sana'a secreteriat
Resumo:
Groundwater from nine wells of three different districts, located at Sana'a secretariat was analyzed for hydrochemical quality assessment. Measurements of water quality parameters including pH, EC, CO3(2-), HCO3-, Cl-, NO3-, SO4(2-), Ca2+, Mg2+, Fe3+, K+, and Na+ were carried out . Classification of the groundwater samples according to Cl, SO4(2-), CO3(2-) and HCO3-, hardness (H), total dissolved solids (TDS), base-exchange, and meteoric genesis was demonstrated. Suitability of ground water samples for irrigation and industrial uses according to sodium adsorption ration (SAR), ratio of dissolved sodium (RDS), residual sodium carbonate (RSC) and saturation index (SI) was also investigated. The results of this study showed that almost all ground water samples were of good quality that makes them suitable for drinking and domestic uses. Results also indicated that even though some of the ground water samples were suitable for irrigation purposes, almost all of them were found not be good for industrial uses. Despite all drawbacks of the sewerage system built around Sana'a secretariat at the beginning of the first decade of the third millennium, the results of this study indicate that there is scope of significant improvement in Sana'a secretariat ground water quality.
Resumo:
This work describes a method to determine Cu at wide range concentrations in a single run without need of further dilutions employing high-resolution continuum source flame atomic absorption spectrometry. Different atomic lines for Cu at 324.754 nm, 327.396 nm, 222.570 nm, 249.215 nm and 224.426 nm were evaluated and main figures of merit established. Absorbance measurements at 324.754 nm, 249.215 nm and 224.426 nm allows the determination of Cu in the 0.07 - 5.0 mg L-1, 5.0 - 100 mg L-1 and 100 - 800 mg L-1 concentration intervals respectively with linear correlation coefficients better than 0.998. Limits of detection were 21 µg L-1, 310 µg L-1 and 1400 µg L-1 for 324.754 nm, 249.215 nm and 224.426 nm, respectively and relative standard deviations (n = 12) were £ 2.7%. The proposed method was applied to water samples spiked with Cu and the results were in agreement at a 95% of confidence level (paired t-test) with those obtained by line-source flame atomic absorption spectrometry.
Resumo:
The irrigation management based on the monitoring of the soil water content allows for the minimization of the amount of water applied, making its use more efficient. Taking into account these aspects, in this work, a sensor for measuring the soil water content was developed to allow real time automation of irrigation systems. This way, problems affecting crop yielding such as irregularities in the time to turn on or turn off the pump, and excess or deficit of water can be solved. To develop the sensors were used stainless steel rods, resin, and insulating varnish. The sensors measuring circuit was based on a microcontroller, which gives its output signal in the digital format. The sensors were calibrated using soil of the type Quartzarenic Neosoil. A third order polynomial model was fitted to the experimental data between the values of water content corresponding to the field capacity and the wilting point to correlate the soil water content obtained by the oven standard method with those measured by the electronic circuit, with a coefficient of determination of 93.17%, and an accuracy in the measures of ±0.010 kg kg-1. Based on the results, it was concluded that the sensor and its implemented measuring circuit can be used in the automation process of irrigation systems.