998 resultados para Intra prediction
Resumo:
Background: It is debated whether chronic hypertension increases the risk of cardiovascular incidents during anaesthesia. Methods: We studied all elective surgical operations performed in adults under general or regional anaesthesia between 2000 and 2004, in 24 hospitals collecting computerised clinical data on all anaesthetia since 1996. The focus was on cardiovascular incidents, though other anaesthesia-related incidents were also evaluated. Results: Among 124 939 interventions, 27 881 (22%) were performed in hypertensive patients. At least one cardiovascular incident occurred in 7549 interventions (6% [95% CI 5.9-6.2%]). The average adjusted odds ratio of cardiovascular risk in patients with chronic hypertension was 1.38 (95% CI 1.27-1.49). However, across hospitals, adjusted odd ratios varied from 0.41 up to 2.25. Hypertension did not increase the risk of other incidents. Conclusions: Hypertensive patients are still at risk of intra-operative cardiovascular incidents. The heterogeneity of the risk to develop cardiovascular incidents varied across hospitals, despite taking into account casemix and hospital characteristics. These variations suggest that anaesthetic practices differ across anesthesia services
Resumo:
Superheater corrosion causes vast annual losses for the power companies. With a reliable corrosion prediction method, the plants can be designed accordingly, and knowledge of fuel selection and determination of process conditions may be utilized to minimize superheater corrosion. Growing interest to use recycled fuels creates additional demands for the prediction of corrosion potential. Models depending on corrosion theories will fail, if relations between the inputs and the output are poorly known. A prediction model based on fuzzy logic and an artificial neural network is able to improve its performance as the amount of data increases. The corrosion rate of a superheater material can most reliably be detected with a test done in a test combustor or in a commercial boiler. The steel samples can be located in a special, temperature-controlled probe, and exposed to the corrosive environment for a desired time. These tests give information about the average corrosion potential in that environment. Samples may also be cut from superheaters during shutdowns. The analysis ofsamples taken from probes or superheaters after exposure to corrosive environment is a demanding task: if the corrosive contaminants can be reliably analyzed, the corrosion chemistry can be determined, and an estimate of the material lifetime can be given. In cases where the reason for corrosion is not clear, the determination of the corrosion chemistry and the lifetime estimation is more demanding. In order to provide a laboratory tool for the analysis and prediction, a newapproach was chosen. During this study, the following tools were generated: · Amodel for the prediction of superheater fireside corrosion, based on fuzzy logic and an artificial neural network, build upon a corrosion database developed offuel and bed material analyses, and measured corrosion data. The developed model predicts superheater corrosion with high accuracy at the early stages of a project. · An adaptive corrosion analysis tool based on image analysis, constructedas an expert system. This system utilizes implementation of user-defined algorithms, which allows the development of an artificially intelligent system for thetask. According to the results of the analyses, several new rules were developed for the determination of the degree and type of corrosion. By combining these two tools, a user-friendly expert system for the prediction and analyses of superheater fireside corrosion was developed. This tool may also be used for the minimization of corrosion risks by the design of fluidized bed boilers.
Resumo:
Near-infrared spectroscopy (NIRS) was used to analyse the crude protein content of dried and milled samples of wheat and to discriminate samples according to their stage of growth. A calibration set of 72 samples from three growth stages of wheat (tillering, heading and harvest) and a validation set of 28 samples was collected for this purpose. Principal components analysis (PCA) of the calibration set discriminated groups of samples according to the growth stage of the wheat. Based on these differences, a classification procedure (SIMCA) showed a very accurate classification of the validation set samples : all of them were successfully classified in each group using this procedure when both the residual and the leverage were used in the classification criteria. Looking only at the residuals all the samples were also correctly classified except one of tillering stage that was assigned to both tillering and heading stages. Finally, the determination of the crude protein content of these samples was considered in two ways: building up a global model for all the growth stages, and building up local models for each stage, separately. The best prediction results for crude protein were obtained using a global model for samples in the two first growth stages (tillering and heading), and using a local model for the harvest stage samples.
Resumo:
Regression equations predicting dissectable muscle weight in rabbits from external measurements were presented. Bone weight and weight of muscle groups were also carcass predicted. Predictive capacity of external measurements, retail cuts and muscle groups on total muscle, percent muscle, total bone and muscle to bone ratio were studied separately. Measurements on dissected retail cuts should be included in ordcr to obtain good equations for prediction of percent muscle in the carcass. Equations for predicting the muscle to bone ratio using external mcasurcments and data from the dissection of one hind leg were suggested. The equations had generally high coefficients of determination. The coefficient of determination for prediction of dissectable muscle was 0.91, and for percent muscle in the carcass 0.79.
Resumo:
BACKGROUND: Obesity is strongly associated with major depressive disorder (MDD) and various other diseases. Genome-wide association studies have identified multiple risk loci robustly associated with body mass index (BMI). In this study, we aimed to investigate whether a genetic risk score (GRS) combining multiple BMI risk loci might have utility in prediction of obesity in patients with MDD. METHODS: Linear and logistic regression models were conducted to predict BMI and obesity, respectively, in three independent large case-control studies of major depression (Radiant, GSK-Munich, PsyCoLaus). The analyses were first performed in the whole sample and then separately in depressed cases and controls. An unweighted GRS was calculated by summation of the number of risk alleles. A weighted GRS was calculated as the sum of risk alleles at each locus multiplied by their effect sizes. Receiver operating characteristic (ROC) analysis was used to compare the discriminatory ability of predictors of obesity. RESULTS: In the discovery phase, a total of 2,521 participants (1,895 depressed patients and 626 controls) were included from the Radiant study. Both unweighted and weighted GRS were highly associated with BMI (P <0.001) but explained only a modest amount of variance. Adding 'traditional' risk factors to GRS significantly improved the predictive ability with the area under the curve (AUC) in the ROC analysis, increasing from 0.58 to 0.66 (95% CI, 0.62-0.68; χ(2) = 27.68; P <0.0001). Although there was no formal evidence of interaction between depression status and GRS, there was further improvement in AUC in the ROC analysis when depression status was added to the model (AUC = 0.71; 95% CI, 0.68-0.73; χ(2) = 28.64; P <0.0001). We further found that the GRS accounted for more variance of BMI in depressed patients than in healthy controls. Again, GRS discriminated obesity better in depressed patients compared to healthy controls. We later replicated these analyses in two independent samples (GSK-Munich and PsyCoLaus) and found similar results. CONCLUSIONS: A GRS proved to be a highly significant predictor of obesity in people with MDD but accounted for only modest amount of variance. Nevertheless, as more risk loci are identified, combining a GRS approach with information on non-genetic risk factors could become a useful strategy in identifying MDD patients at higher risk of developing obesity.
Resumo:
Ultrasonographic detection of subclinical atherosclerosis improves cardiovascular risk stratification, but uncertainty persists about the most discriminative method to apply. In this study, we found that the "atherosclerosis burden score (ABS)", a novel straightforward ultrasonographic score that sums the number of carotid and femoral arterial bifurcations with plaques, significantly outperformed common carotid intima-media thickness, carotid mean/maximal thickness, and carotid/femoral plaque scores for the detection of coronary artery disease (CAD) (receiver operating characteristic (ROC) curve area under the curve (AUC) = 0.79; P = 0.027 to <0.001 with the other five US endpoints) in 203 patients undergoing coronary angiography. ABS was also more correlated with CAD extension (R = 0.55; P < 0.001). Furthermore, in a second group of 1128 patients without cardiovascular disease, ABS was weakly correlated with the European Society of Cardiology chart risk categories (R (2) = 0.21), indicating that ABS provided information beyond usual cardiovascular risk factor-based risk stratification. Pending prospective studies on hard cardiovascular endpoints, ABS appears as a promising tool in primary prevention.
Resumo:
In this commentary, we argue that the term 'prediction' is overly used when in fact, referring to foundational writings of de Finetti, the correspondent term should be inference. In particular, we intend (i) to summarize and clarify relevant subject matter on prediction from established statistical theory, and (ii) point out the logic of this understanding with respect practical uses of the term prediction. Written from an interdisciplinary perspective, associating statistics and forensic science as an example, this discussion also connects to related fields such as medical diagnosis and other areas of application where reasoning based on scientific results is practiced in societal relevant contexts. This includes forensic psychology that uses prediction as part of its vocabulary when dealing with matters that arise in the course of legal proceedings.