911 resultados para Interactions and Diffusion
Resumo:
Birds that remove ectoparasites and other food material from their hosts are iconic illustrations of mutualistic-commensalistic cleaning associations. To assess the complex pattern of food resource use embedded in cleaning interactions of an assemblage of birds and their herbivorous mammal hosts in open habitats in Brazil, we used a network approach that characterized their patterns of association. Cleaning interactions showed a distinctly nested pattern, related to the number of interactions of cleaners and hosts and to the range of food types that each host species provided. Hosts that provided a wide range of food types (flies, ticks, tissue and blood, and organic debris) were attended by more species of cleaners and formed the core of the web. On the other hand, core cleaner species did not exploit the full range of available food resources, but used a variety of host species to exploit these resources instead. The structure that we found indicates that cleaners rely on cleaning interactions to obtain food types that would not be available otherwise (e.g., blood-engorged ticks or horseflies, wounded tissue). Additionally, a nested organization for the cleaner bird mammalian herbivore association means that both generalist and selective species take part in the interactions and that partners of selective species form an ordered subset of the partners of generalist species. The availability of predictable protein-rich food sources for birds provided by cleaning interactions may lead to an evolutionary pathway favoring their increased use by birds that forage opportunistically. Received 30 June 2011, accepted 10 November 2011.
Resumo:
The recently announced Higgs boson discovery marks the dawn of the direct probing of the electroweak symmetry breaking sector. Sorting out the dynamics responsible for electroweak symmetry breaking now requires probing the Higgs boson interactions and searching for additional states connected to this sector. In this work, we analyze the constraints on Higgs boson couplings to the standard model gauge bosons using the available data from Tevatron and LHC. We work in a model-independent framework expressing the departure of the Higgs boson couplings to gauge bosons by dimension-six operators. This allows for independent modifications of its couplings to gluons, photons, and weak gauge bosons while still preserving the Standard Model (SM) gauge invariance. Our results indicate that best overall agreement with data is obtained if the cross section of Higgs boson production via gluon fusion is suppressed with respect to its SM value and the Higgs boson branching ratio into two photons is enhanced, while keeping the production and decays associated to couplings to weak gauge bosons close to their SM prediction.
Resumo:
Activity and behavior patterns are important components of a given species ecological strategy, as they have profound implications for its survival and reproduction. Here, we studied the activities, movements and secretive behavior of the thin-spined porcupine Chaetomys subspinosus (Rodentia: Erethizontidae), a threatened arboreal folivore in the Brazilian Atlantic rainforest. We aimed to ascertain the behavioral strategies used by this species as well as its responses to seasonal and daily climatic changes. Four radio-collared individuals were followed continuously for 72-h in the summer and winter, as well as during 146 half-night sessions conducted from April 2005 to September 2006 in forest remnants in southern Bahia. The thin-spined porcupines were nocturnally active (17:30-05:40 h), with peaks in activity and movement from 19:00 to 20:00 h and 03:00 to 04:00 h. Animals followed a circadian rhythm of activity during both the summer and winter. During the diel cycle, porcupines spent 74% of their time resting, 14% feeding, 11% traveling and 2% performing other activities. Distance traveled during the diel cycle averaged 277.5 +/- 117.9 m sd. The mean movement rate during the night was 21.6 +/- 30.1 m/h sd. No significant changes in activity budget or daily distance traveled were observed between seasons, most likely in response to the low fluctuations in climatic conditions and food availability throughout the year in the study region. However, rainfall reduced the time that the animals spent on feeding activities and explained day-to-day differences in activity budgets. We also provide details about intraspecific interactions and defecation behavior. Our observations confirmed that thin-spined porcupines, similar to other folivorous species, present low activity levels and short daily movements, and have adopted various cryptic habits, such as nocturnality, a solitary lifestyle, the tendency to leave offspring alone most of the time and defecation in concealed latrines.
Resumo:
This paper reports measurements of atmospheric neutrino and antineutrino interactions in the MINOS Far Detector, based on 2553 live-days (37.9 kton-years) of data. A total of 2072 candidate events are observed. These are separated into 905 contained-vertex muons and 466 neutrino-induced rock-muons, both produced by charged-current nu(mu) and (nu) over bar (mu) interactions, and 701 contained-vertex showers, composed mainly of charged-current nu(e) and (nu) over bar (e) interactions and neutral-current interactions. The curvature of muon tracks in the magnetic field of the MINOS Far Detector is used to select separate samples of nu(mu) and (nu) over bar (mu) events. The observed ratio of (nu) over bar (mu) to v(mu) events is compared with the Monte Carlo ( MC) simulation, giving a double ratio of R((nu) over bar/nu)data/R(nu) over bar/nu MC = 1.03 +/- 0.08(stat) +/- 0.08(syst). The v(mu) and (nu) over bar (mu) data are separated into bins of L/E resolution, based on the reconstructed energy and direction of each event, and a maximum likelihood fit to the observed L/E distributions is used to determine the atmospheric neutrino oscillation parameters. This fit returns 90% confidence limits of |Delta m(2)| = (1.9 +/- 0.4) x 10(-3) eV(2) and sin(2)2 theta > 0.86. The fit is extended to incorporate separate nu(mu) and (nu) over bar mu oscillation parameters, returning 90% confidence limits of |Delta m(2)| - |Delta(m) over bar (2)| = 0.6(-0.8)(+2.4) x 10(-3) eV(2) on the difference between the squared-mass splittings for neutrinos and antineutrinos.
Resumo:
Abstract Background The thymus is a central lymphoid organ, in which bone marrow-derived T cell precursors undergo a complex process of maturation. Developing thymocytes interact with thymic microenvironment in a defined spatial order. A component of thymic microenvironment, the thymic epithelial cells, is crucial for the maturation of T-lymphocytes through cell-cell contact, cell matrix interactions and secretory of cytokines/chemokines. There is evidence that extracellular matrix molecules play a fundamental role in guiding differentiating thymocytes in both cortical and medullary regions of the thymic lobules. The interaction between the integrin α5β1 (CD49e/CD29; VLA-5) and fibronectin is relevant for thymocyte adhesion and migration within the thymic tissue. Our previous results have shown that adhesion of thymocytes to cultured TEC line is enhanced in the presence of fibronectin, and can be blocked with anti-VLA-5 antibody. Results Herein, we studied the role of CD49e expressed by the human thymic epithelium. For this purpose we knocked down the CD49e by means of RNA interference. This procedure resulted in the modulation of more than 100 genes, some of them coding for other proteins also involved in adhesion of thymocytes; others related to signaling pathways triggered after integrin activation, or even involved in the control of F-actin stress fiber formation. Functionally, we demonstrated that disruption of VLA-5 in human TEC by CD49e-siRNA-induced gene knockdown decreased the ability of TEC to promote thymocyte adhesion. Such a decrease comprised all CD4/CD8-defined thymocyte subsets. Conclusion Conceptually, our findings unravel the complexity of gene regulation, as regards key genes involved in the heterocellular cell adhesion between developing thymocytes and the major component of the thymic microenvironment, an interaction that is a mandatory event for proper intrathymic T cell differentiation.
Resumo:
Abstract Background The main focus of several studies concerned with cancer progression and metastasis is to analyze the mechanisms that allow cancer cells to interact and quickly adapt with their environment. Integrins, a family of transmembrane glycoproteins, play a major role in invasive and metastatic processes. Integrins are involved in cell adhesion in both cell-extracellular matrix and cell-cell interactions, and particularly, β1 integrin is involved in proliferation and differentiation of cells in the development of epithelial tissues. This work aimed to investigate the putative role of β1 integrin expression on survival and metastasis in patients with breast invasive ductal carcinoma (IDC). In addition, we compared the expression of β1 integrin in patients with ductal carcinoma in situ (DCIS). Methods Through tissue microarray (TMA) slides containing 225 samples of IDC and 67 samples of DCIS, β1 integrin expression was related with several immunohistochemical markers and clinicopathologic features of prognostic significance. Results β1 integrin was overexpressed in 32.8% of IDC. In IDC, β1 integrin was related with HER-2 (p = 0.019) and VEGF (p = 0.011) expression and it had a significant relationship with metastasis and death (p = 0.001 and p = 0.05, respectively). Kaplan-Meier survival analysis showed that the overexpression of this protein is very significant (p = 0.002) in specific survival (number of months between diagnosis and death caused by the disease). There were no correlation between IDC and DCIS (p = 0.559) regarding β1 integrin expression. Conclusions Considering that the expression of β1 integrin in breast cancer remains controversial, specially its relation with survival of patients, our findings provide further evidence that β1 integrin can be a marker of poor prognosis in breast cancer. Virtual slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/6652215267393871
Resumo:
Anxiety is an important component of the psychopathology of the obsessive-compulsive disorder (OCD). So far, most interventions that have proven to be effective for treating OCD are similar to those developed for other anxiety disorders. However, neurobiological studies of OCD came to conclusions that are not always compatible with those previously associated with other anxiety disorders. OBJECTIVES: The aim of this study is to review the degree of overlap between OCD and other anxiety disorders phenomenology and pathophysiology to support the rationale that guides research in this field. RESULTS: Clues about the neurocircuits involved in the manifestation of anxiety disorders have been obtained through the study of animal anxiety models, and structural and functional neuroimaging in humans. These investigations suggest that in OCD, in addition to dysfunction in cortico-striatal pathways, the functioning of an alternative neurocircuitry, which involves amygdalo-cortical interactions and participates in fear conditioning and extinction processes, may be impaired. CONCLUSION: It is likely that anxiety is a relevant dimension of OCD that impacts on other features of this disorder. Therefore, future studies may benefit from the investigation of the expression of fear and anxiety by OCD patients according to their type of obsessions and compulsions, age of OCD onset, comorbidities, and patterns of treatment response.
Resumo:
S100A12 (Calgranulin C) is a small acidic calcium-binding peripheral membrane protein with two EF-hand structural motifs. It is expressed in macrophages and lymphocytes and highly up-regulated in several human inflammatory diseases. In pigs, S100A12 is abundant in the cytosol of granulocytes, where it is believed to be involved in signal modulation of inflammatory process. In this study, we investigated the interaction of the porcine S100A12 with phospholipid bilayers and the effect that ions (Ca2+, Zn2+ or both together) have in modifying protein-lipid interactions. More specifically, we intended to address issues such as: (1) is the protein-membrane interaction modulated by the presence of ions? (2) is the protein overall structure affected by the presence of the ions and membrane models simultaneously? (3) what are the specific conformational changes taking place when ions and membranes are both present? (4) does the protein have any kind of molecular preferences for a specific lipid component? To provide insight into membrane interactions and answer those questions, synchrotron radiation circular dichroism spectroscopy, fluorescence spectroscopy, and surface plasmon resonance were used. The use of these combined techniques demonstrated that this protein was capable of interacting both with lipids and with ions in solution, and enabled examination of changes that occur at different levels of structure organization. The presence of both Ca2+ and Zn2+ ions modify the binding, conformation and thermal stability of the protein in the presence of lipids. Hence, these studies examining molecular interactions of porcine S100A12 in solution complement the previously determined crystal structure information on this family of proteins, enhancing our understanding of its dynamics of interaction with membranes.
Resumo:
In this thesis we focussed on the characterization of the reaction center (RC) protein purified from the photosynthetic bacterium Rhodobacter sphaeroides. In particular, we discussed the effects of native and artificial environment on the light-induced electron transfer processes. The native environment consist of the inner antenna LH1 complex that copurifies with the RC forming the so called core complex, and the lipid phase tightly associated with it. In parallel, we analyzed the role of saccharidic glassy matrices on the interplay between electron transfer processes and internal protein dynamics. As a different artificial matrix, we incorporated the RC protein in a layer-by-layer structure with a twofold aim: to check the behaviour of the protein in such an unusual environment and to test the response of the system to herbicides. By examining the RC in its native environment, we found that the light-induced charge separated state P+QB - is markedly stabilized (by about 40 meV) in the core complex as compared to the RC-only system over a physiological pH range. We also verified that, as compared to the average composition of the membrane, the core complex copurifies with a tightly bound lipid complement of about 90 phospholipid molecules per RC, which is strongly enriched in cardiolipin. In parallel, a large ubiquinone pool was found in association with the core complex, giving rise to a quinone concentration about ten times larger than the average one in the membrane. Moreover, this quinone pool is fully functional, i.e. it is promptly available at the QB site during multiple turnover excitation of the RC. The latter two observations suggest important heterogeneities and anisotropies in the native membranes which can in principle account for the stabilization of the charge separated state in the core complex. The thermodynamic and kinetic parameters obtained in the RC-LH1 complex are very close to those measured in intact membranes, indicating that the electron transfer properties of the RC in vivo are essentially determined by its local environment. The studies performed by incorporating the RC into saccharidic matrices evidenced the relevance of solvent-protein interactions and dynamical coupling in determining the kinetics of electron transfer processes. The usual approach when studying the interplay between internal motions and protein function consists in freezing the degrees of freedom of the protein at cryogenic temperature. We proved that the “trehalose approach” offers distinct advantages with respect to this traditional methodology. We showed, in fact, that the RC conformational dynamics, coupled to specific electron transfer processes, can be modulated by varying the hydration level of the trehalose matrix at room temperature, thus allowing to disentangle solvent from temperature effects. The comparison between different saccharidic matrices has revealed that the structural and dynamical protein-matrix coupling depends strongly upon the sugar. The analyses performed in RCs embedded in polyelectrolyte multilayers (PEM) structures have shown that the electron transfer from QA - to QB, a conformationally gated process extremely sensitive to the RC environment, can be strongly modulated by the hydration level of the matrix, confirming analogous results obtained for this electron transfer reaction in sugar matrices. We found that PEM-RCs are a very stable system, particularly suitable to study the thermodynamics and kinetics of herbicide binding to the QB site. These features make PEM-RC structures quite promising in the development of herbicide biosensors. The studies discussed in the present thesis have shown that, although the effects on electron transfer induced by the native and artificial environments tested are markedly different, they can be described on the basis of a common kinetic model which takes into account the static conformational heterogeneity of the RC and the interconversion between conformational substates. Interestingly, the same distribution of rate constants (i.e. a Gamma distribution function) can describe charge recombination processes in solutions of purified RC, in RC-LH1 complexes, in wet and dry RC-PEM structures and in glassy saccharidic matrices over a wide range of hydration levels. In conclusion, the results obtained for RCs in different physico-chemical environments emphasize the relevance of the structure/dynamics solvent/protein coupling in determining the energetics and the kinetics of electron transfer processes in a membrane protein complex.
Resumo:
The abandonment of less productive fields and agro-forest activities has occured in the last decades, interesting large mountain areas in all mediterranean basin. Until the fifties, agricultural practices dealt mainly with soil surface and surface runoff control systems. However, the apparent sustainability of soil use results often in contrast with historical documents, witnessing heavy hydrogeological instability, in naturally fragile areas. The research focused on the dynamics and effects of post-coltural land abandonment in a critical mountain area of the Reno River. The Reno River rappresents a typical Tuscan-Emilian Apennines Watershed where soil erosion occurs under very different conditions depending on interactions between land use, climate, geomorphology and lithology. Landslides are largely rappresented, due to the diffusion of clay hill slopes. Recent researches suggest that climatic variability will increase as a consequence of global climate change, resulting in greater frequency and intensity of extreme weather events, which could increase rates of erosion, landslides reactivations and diffusion of calanchive basins. As far as hill slopes are concerned, instability is today basically due to intrinsic factors, as the Apennine range is a rather young formation, in geological terms, and is mainly formed by sedimentary rocks with high occurrence of clays. Therefore landslides and rockfalls are very frequent, while surface soil erosion is generally low and anyway concentrated in the low Apennine, where intensive farming is still economically worth. The study, supported by GIS use, analyses the main fisical characteristics of the area and the historical changes of land use, and focalizes the dynamics of spontaneous reafforestation. Futhermore, the research studies the results of soil bioengineering and surface water control solutions for the restablishment of landslides occured in the last period. Infact soil bioengineering has been recently used in different situations in order to consolidate slopes and hillsides and prevent erosion; when applied, it gave good results, both in terms of engineering efficiency and vegetational development, expecially if combined with a good hydraulic control, thus proving to be an actual alternative to other techniques with heavier environmental impacts. Research into the specific site features and the use of proper plant species is vital to the success of bioengineering works.
Resumo:
Investigations on formation and specification of neural precursor cells in the central nervous system of the Drosophila melanogaster embryoSpecification of a unique cell fate during development of a multicellular organism often is a function of its position. The Drosophila central nervous system (CNS) provides an ideal system to dissect signalling events during development that lead to cell specific patterns. Different cell types in the CNS are formed from a relatively few precursor cells, the neuroblasts (NBs), which delaminate from the neurogenic region of the ectoderm. The delamination occurs in five waves, S1-S5, finally leading to a subepidermal layer consisting of about 30 NBs, each with a unique identity, arranged in a stereotyped spatial pattern in each hemisegment. This information depends on several factors such as the concentrations of various morphogens, cell-cell interactions and long range signals present at the position and time of its birth. The early NBs, delaminating during S1 and S2, form an orthogonal array of four rows (2/3,4,5,6/7) and three columns (medial, intermediate, and lateral) . However, the three column and four row-arrangement pattern is only transitory during early stages of neurogenesis which is obscured by late emerging (S3-S5) neuroblasts (Doe and Goodman, 1985; Goodman and Doe, 1993). Therefore the aim of my study has been to identify novel genes which play a role in the formation or specification of late delaminating NBs.In this study the gene anterior open or yan was picked up in a genetic screen to identity novel and yet unidentified genes in the process of late neuroblast formation and specification. I have shown that the gene yan is responsible for maintaining the cells of the neuroectoderm in an undifferentiated state by interfering with the Notch signalling mechanism. Secondly, I have studied the function and interactions of segment polarity genes within a certain neuroectodermal region, namely the engrailed (en) expressing domain, with regard to the fate specification of a set of late neuroblasts, namely NB 6-4 and NB 7-3. I have dissected the regulatory interaction of the segment polarity genes wingless (wg), hedgehog (hh) and engrailed (en) as they maintain each others expression to show that En is a prerequisite for neurogenesis and show that the interplay of the segmentation genes naked (nkd) and gooseberry (gsb), both of which are targets of wingless (wg) activity, leads to differential commitment of NB 7-3 and NB 6-4 cell fate. I have shown that in the absence of either nkd or gsb one NB fate is replaced by the other. However, the temporal sequence of delamination is maintained, suggesting that formation and specification of these two NBs are under independent control.
Structure and dynamics of supramolecular assemblies studied by advanced solid-state NMR spectroscopy
Resumo:
Ziel der vorliegenden Arbeit ist die Aufklärung von Struktur und Dynamik komplexer supramolekularer Systeme mittels Festkörper NMR Spektroskopie. Die Untersuchung von pi-pi Wechselwirkungen, welche einen entscheidenden Einfluss auf die strukturellen und dynamischen Eigenschaften supra- molekularer Systeme haben, hilft dabei, die Selbst- organisationsprozesse dieser komplexen Materialien besser zu verstehen. Mit dipolaren 1H-1H and 1H-13C Wiedereinkopplungs NMR Methoden unter schnellem MAS können sowohl 1H chemische Verschiebungen als auch dipolare 1H-1H und 1H-13C Kopplungen untersucht werden, ohne dass eine Isotopenmarkierung erforderlich ist. So erhält man detaillierte Informationen über die Struktur und die Beweglichkeit einzelner Molekül- segmente. In Verbindung mit sogenannten nucleus independent chemical shift (NICS) maps (berechnet mit ab-initio Methoden) lassen sich Abstände von Protonen relativ zu pi-Elektronensystemen bestimmen und so Strukturvorschläge ableiten. Mit Hilfe von homo- und heteronuklearen dipolaren Rotationsseitenbandenmustern könnenaußerdem Ordnungs- parameter für verschiedene Molekülsegmente bestimmt werden. Die auf diese Weise gewonnenen Informationen über die strukturellen und dynamischen Eigenschaften supramolekularer Systeme tragen dazu bei, strukturbestimmende Molekül- einheiten und Hauptordnungsphänomene zu identifizieren sowie lokale Wechselwirkungen zu quantifizieren, um so den Vorgang der Selbstorganisation besser zu verstehen.
Resumo:
We investigated at the molecular level protein/solvent interactions and their relevance in protein function through the use of amorphous matrices at room temperature. As a model protein, we used the bacterial photosynthetic reaction center (RC) of Rhodobacter sphaeroides, a pigment protein complex which catalyzes the light-induced charge separation initiating the conversion of solar into chemical energy. The thermal fluctuations of the RC and its dielectric conformational relaxation following photoexcitation have been probed by analyzing the recombination kinetics of the primary charge-separated (P+QA-) state, using time resolved optical and EPR spectroscopies. We have shown that the RC dynamics coupled to this electron transfer process can be progressively inhibited at room temperature by decreasing the water content of RC films or of RC-trehalose glassy matrices. Extensive dehydration of the amorphous matrices inhibits RC relaxation and interconversion among conformational substates to an extent comparable to that attained at cryogenic temperatures in water-glycerol samples. An isopiestic method has been developed to finely tune the hydration level of the system. We have combined FTIR spectral analysis of the combination and association bands of residual water with differential light-minus-dark FTIR and high-field EPR spectroscopy to gain information on thermodynamics of water sorption, and on structure/dynamics of the residual water molecules, of protein residues and of RC cofactors. The following main conclusions were reached: (i) the RC dynamics is slaved to that of the hydration shell; (ii) in dehydrated trehalose glasses inhibition of protein dynamics is most likely mediated by residual water molecules simultaneously bound to protein residues and sugar molecules at the protein-matrix interface; (iii) the local environment of cofactors is not involved in the conformational dynamics which stabilizes the P+QA-; (iv) this conformational relaxation appears to be rather delocalized over several aminoacidic residues as well as water molecules weakly hydrogen-bonded to the RC.
Resumo:
In this work the surface layer formation in polymer melts and in polymer solutions have been investigated with the atomic force microscope (AFM). In polymer melts, the formation of an immobile surface layer results in a steric repulsion, which can be measured by the AFM. From former work it is know, that polydimethyl siloxane (PDMS) forms a stable surface layer for molecular weights above 12 kDa. In the present thesis, polyisoprene (PI) was investigated apart from PDMS, by a)measuring the steric surface interactions and b)measuring the surface slip in hydrodynamic experiments. If a polymer flows over a surface, the flow velocity at the surface is larger then zero. If case of a surface layer formation the flow plane changes to the top of the adsorbed layer and the surface slip is reduced to zero. By measuring the surface slip in hydrodynamic experiments, it is therefore possible to determine the presence of a stable surface layer. The results show no stable repulsion for PI and only a small decrease of the surface slip. This indicates that PI does not form a stable surface layer, but is only adsorbed weakly to the surface. Furthermore for 8 kDa PDMS the timescale of the formation of a surface layer was investigated by changing themaximal force the tip applied to the surface. With a repulsive force present, applying a higher force than 15 nN resulted in a destruction of the surface layer, indicated by attractive forces. Reducing the applied force below 15 nN then resulted in an increase of the repulsion to the former state during one minute, thus indicating that a surface layer can be formed within one minute even under the influence of continuous measurements. As a next step, mixtures of two PDMS homopolymers with different chain lengths have been investigated. The aim was to verify theoretical predictions that shorter chains should predominate at the surface due to their smaller loss in conformational entropy. The measurements where done in dependence of the volume fractions of short and long chain PMDS. The results confirmed the short chain dominance for all mixtures with less then 90 vol.% long chain PDMS. Surface layer formation in solution was investigated for superplasticizers which are industrially used as an additive to cement. They change the surface interaction between the cement grains from attractive to repulsive and the freshlymixed cement paste therefore becomes liquid. The aimin this part of the thesis was, to investigate cement particle interactions in a close to real environment. Therefore calcium silicate hydrate phases have been precipitated onto an AFM tip and onto a calcite crystal and the interaction between these surfaces have beenmeasured with and without addition of superplasticizers. The measurements confirmed the change from attraction to repulsion upon addition of superplasticizers. The repulsive steric interaction increased with the length of the sidechain of the superplasticizer, and the dependence of the range of the steric interactions on the sidechain length indicated that the sidechains are in a coiled conformation.
Resumo:
I studied the effects exerted by the modifications on structures and biological activities of the compounds so obtained. I prepared peptide analogues containing unusual amino acids such as halogenated, alkylated (S)- or (R)-tryptophans, useful for the synthesis of mimetics of the endogenous opioid peptide endomorphin-1, or 2-oxo-1,3-oxazolidine-4-carboxylic acids, utilized as pseudo-prolines having a clear all-trans configuration of the preceding peptide bond. The latter gave access to a series of constrained peptidomimetics with potential interest in medicinal chemistry and in the field of the foldamers. In particular, I have dedicated much efforts to the preparation of cyclopentapeptides containing D-configured, alfa-, or beta-aminoacids, and also of cyclotetrapeptides including the retro-inverso modification. The conformational analyses confirmed that these cyclic compounds can be utilized as rigid scaffolds mimicking gamma- or beta-turns, allowing to generate new molecular and 3D diversity. Much work has been dedicated to the structural analysis in solution and in the receptor-bound state, fundamental for giving a rationale to the experimentally determined bioactivity, as well as for predicting the activity of virtual compounds (in silico pre-screen). The conformational analyses in solution has been done mostly by NMR (2D gCosy, Roesy, VT, molecular dynamics, etc.). A special section is dedicated to the prediction of plausible poses of the ligands when bound to the receptors by Molecular Docking. This computational method proved to be a powerful tool for the investigation of ligand-receptor interactions, and for the design of selective agonists and antagonists. Another practical use of cyclic peptidomimetics was the synthesis and biological evaluation of cyclic analogues of endomorphin-1 lacking in a protonable amino group. The studies revealed that a inverse type II beta-turn on D-Trp-Phe constituted the bioactive conformation.