965 resultados para Intelligent Design
Resumo:
Shrinking product lifecycles, tough international competition, swiftly changing technologies, ever increasing customer quality expectation and demanding high variety options are some of the forces that drive next generation of development processes. To overcome these challenges, design cost and development time of product has to be reduced as well as quality to be improved. Design reuse is considered one of the lean strategies to win the race in this competitive environment. design reuse can reduce the product development time, product development cost as well as number of defects which will ultimately influence the product performance in cost, time and quality. However, it has been found that no or little work has been carried out for quantifying the effectiveness of design reuse in product development performance such as design cost, development time and quality. Therefore, in this study we propose a systematic design reuse based product design framework and developed a design leanness index (DLI) as a measure of effectiveness of design reuse. The DLI is a representative measure of reuse effectiveness in cost, development time and quality. Through this index, a clear relationship between reuse measure and product development performance metrics has been established. Finally, a cost based model has been developed to maximise the design leanness index for a product within the given set of constraints achieving leanness in design process.
Resumo:
In the design studio learning environment, traditional student and staff expectations are of close contact teaching and learning. In recent years at QUT students have experienced reduced personal staff attention, and have increasingly felt “anonymous” and correspondingly disengaged, to the detriment of quality learning (Carbone 1998: 8; Biggs 2003). Concurrently, there has been a necessary increase in teaching by sessional staff at QUT with varied levels of experience and assurance. This paper outlines the first iteration of an action research project exploring whether changing the current QUT design studio student and staff relationships may lead to more engaged, dynamic learning environments. “Engagement” is understood as a primarily emotional, rather than operational student concern (Solomonides and Martin 2008; Austerlitz and Aravot 2007). The project inverted the standard QUT design studio teaching structure, and evaluated the new structure and activation of student engagement across four identified markers: attendance, participation, learning and performance (ACER 2009; NSSE 2005; Chapman 2003). Student and staff surveys and focus groups, corporate data, and informal feedback informed these evaluations. Overall, the results support the premise that when students and staff feel part of a reasonably-sized studio class with a dedicated lecturer and self-selected project, the majority are inclined to value these relationships, to feel actively engaged, and to experience some improvement in their learning and teaching performances.
Resumo:
This action research examines the enhancement of visual communication within the architectural design studio through physical model making. „It is through physical model making that designers explore their conceptual ideas and develop the creation and understanding of space,‟ (Salama & Wilkinson 2007:126). This research supplements Crowther‟s findings extending the understanding of visual dialogue to include physical models. „Architecture Design 8‟ is the final core design unit at QUT in the fourth year of the Bachelor of Design Architecture. At this stage it is essential that students have the ability to communicate their ideas in a comprehensive manner, relying on a combination of skill sets including drawing, physical model making, and computer modeling. Observations within this research indicates that students did not integrate the combination of the skill sets in the design process through the first half of the semester by focusing primarily on drawing and computer modeling. The challenge was to promote deeper learning through physical model making. This research addresses one of the primary reasons for the lack of physical model making, which was the limited assessment emphasis on the physical models. The unit was modified midway through the semester to better correlate the lecture theory with studio activities by incorporating a series of model making exercises conducted during the studio time. The outcome of each exercise was assessed. Tutors were surveyed regarding the model making activities and a focus group was conducted to obtain formal feedback from students. Students and tutors recognised the added value in communicating design ideas through physical forms and model making. The studio environment was invigorated by the enhanced learning outcomes of the students who participated in the model making exercises. The conclusions of this research will guide the structure of the upcoming iteration of the fourth year design unit.
Resumo:
The aim of this paper is to aid researchers in selecting appropriate qualitative methods in order to develop and improve future studies in the field of emotional design. These include observations, think-aloud protocols, questionnaires, diaries and interviews. Based on the authors’ experiences, it is proposed that the methods under review can be successfully used for collecting data on emotional responses to evaluate user product relationships. This paper reviews the methods; discusses the suitability, advantages and challenges in relation to design and emotion studies. Furthermore, the paper outlines the potential impact of technology on the application of these methods, discusses the implications of these methods for emotion research and concludes with recommendations for future work in this area.
Resumo:
This paper presents the development of a low-cost sensor platform for use in ground-based visual pose estimation and scene mapping tasks. We seek to develop a technical solution using low-cost vision hardware that allows us to accurately estimate robot position for SLAM tasks. We present results from the application of a vision based pose estimation technique to simultaneously determine camera poses and scene structure. The results are generated from a dataset gathered traversing a local road at the St Lucia Campus of the University of Queensland. We show the accuracy of the pose estimation over a 1.6km trajectory in relation to GPS ground truth.
Resumo:
The main objective of this paper is to detail the development of a feasible hardware design based on Evolutionary Algorithms (EAs) to determine flight path planning for Unmanned Aerial Vehicles (UAVs) navigating terrain with obstacle boundaries. The design architecture includes the hardware implementation of Light Detection And Ranging (LiDAR) terrain and EA population memories within the hardware, as well as the EA search and evaluation algorithms used in the optimizing stage of path planning. A synthesisable Very-high-speed integrated circuit Hardware Description Language (VHDL) implementation of the design was developed, for realisation on a Field Programmable Gate Array (FPGA) platform. Simulation results show significant speedup compared with an equivalent software implementation written in C++, suggesting that the present approach is well suited for UAV real-time path planning applications.
Resumo:
This paper demonstrates the application of a robust form of pose estimation and scene reconstruction using data from camera images. We demonstrate results that suggest the ability of the algorithm to rival methods of RANSAC based pose estimation polished by bundle adjustment in terms of solution robustness, speed and accuracy, even when given poor initialisations. Our simulated results show the behaviour of the algorithm in a number of novel simulated scenarios reflective of real world cases that show the ability of the algorithm to handle large observation noise and difficult reconstruction scenes. These results have a number of implications for the vision and robotics community, and show that the application of visual motion estimation on robotic platforms in an online fashion is approaching real-world feasibility.
Resumo:
We aim to demonstrate unaided visual 3D pose estimation and map reconstruction using both monocular and stereo vision techniques. To date, our work has focused on collecting data from Unmanned Aerial Vehicles, which generates a number of significant issues specific to the application. Such issues include scene reconstruction degeneracy from planar data, poor structure initialisation for monocular schemes and difficult 3D reconstruction due to high feature covariance. Most modern Visual Odometry (VO) and related SLAM systems make use of a number of sensors to inform pose and map generation, including laser range-finders, radar, inertial units and vision [1]. By fusing sensor inputs, the advantages and deficiencies of each sensor type can be handled in an efficient manner. However, many of these sensors are costly and each adds to the complexity of such robotic systems. With continual advances in the abilities, small size, passivity and low cost of visual sensors along with the dense, information rich data that they provide our research focuses on the use of unaided vision to generate pose estimates and maps from robotic platforms. We propose that highly accurate (�5cm) dense 3D reconstructions of large scale environments can be obtained in addition to the localisation of the platform described in other work [2]. Using images taken from cameras, our algorithm simultaneously generates an initial visual odometry estimate and scene reconstruction from visible features, then passes this estimate to a bundle-adjustment routine to optimise the solution. From this optimised scene structure and the original images, we aim to create a detailed, textured reconstruction of the scene. By applying such techniques to a unique airborne scenario, we hope to expose new robotic applications of SLAM techniques. The ability to obtain highly accurate 3D measurements of an environment at a low cost is critical in a number of agricultural and urban monitoring situations. We focus on cameras as such sensors are small, cheap and light-weight and can therefore be deployed in smaller aerial vehicles. This, coupled with the ability of small aerial vehicles to fly near to the ground in a controlled fashion, will assist in increasing the effective resolution of the reconstructed maps.
Resumo:
Water Sensitive Urban Design (WSUD) practices such as wetlands, bioretention systems and swales are widely implemented in Australia’s urban areas for the mitigation of stormwater pollution and to enhance its reuse potential. In-depth research undertaken has confirmed that these systems do not always perform according to design expectations due to a diversity of reasons. To deliver anticipated benefits, it is critical that they are designed in conformity with catchment and rainfall characteristics and pollutant processes. This in turn entails an in-depth understanding of key pollutant processes. This paper presents the outcomes of extensive research investigations on pollutant characterisation and stormwater pollutant processes on urban catchment surfaces. Outcomes from the research studies revealed the complexities in physical and chemical characteristics of pollutants originating from urban catchments which are strongly influenced by rainfall and catchment characteristics. Based on the research outcomes, recommendations are provided to enhance stormwater treatment performance and to enhance its reuse potential.
Resumo:
Mechanical control systems have become a part of our everyday life. Systems such as automobiles, robot manipulators, mobile robots, satellites, buildings with active vibration controllers and air conditioning systems, make life easier and safer, as well as help us explore the world we live in and exploit it’s available resources. In this chapter, we examine a specific example of a mechanical control system; the Autonomous Underwater Vehicle (AUV). Our contribution to the advancement of AUV research is in the area of guidance and control. We present innovative techniques to design and implement control strategies that consider the optimization of time and/or energy consumption. Recent advances in robotics, control theory, portable energy sources and automation increase our ability to create more intelligent robots, and allows us to conduct more explorations by use of autonomous vehicles. This facilitates access to higher risk areas, longer time underwater, and more efficient exploration as compared to human occupied vehicles. The use of underwater vehicles is expanding in every area of ocean science. Such vehicles are used by oceanographers, archaeologists, geologists, ocean engineers, and many others. These vehicles are designed to be agile, versatile and robust, and thus, their usage has gone from novelty to necessity for any ocean expedition.
Resumo:
Path planning and trajectory design for autonomous underwater vehicles (AUVs) is of great importance to the oceanographic research community because automated data collection is becoming more prevalent. Intelligent planning is required to maneuver a vehicle to high-valued locations to perform data collection. In this paper, we present algorithms that determine paths for AUVs to track evolving features of interest in the ocean by considering the output of predictive ocean models. While traversing the computed path, the vehicle provides near-real-time, in situ measurements back to the model, with the intent to increase the skill of future predictions in the local region. The results presented here extend prelim- inary developments of the path planning portion of an end-to-end autonomous prediction and tasking system for aquatic, mobile sensor networks. This extension is the incorporation of multiple vehicles to track the centroid and the boundary of the extent of a feature of interest. Similar algorithms to those presented here are under development to consider additional locations for multiple types of features. The primary focus here is on algorithm development utilizing model predictions to assist in solving the motion planning problem of steering an AUV to high-valued locations, with respect to the data desired. We discuss the design technique to generate the paths, present simulation results and provide experimental data from field deployments for tracking dynamic features by use of an AUV in the Southern California coastal ocean.
Resumo:
Autonomous underwater gliders are robust and widely-used ocean sampling platforms that are characterized by their endurance, and are one of the best approaches to gather subsurface data at the appropriate spatial resolution to advance our knowledge of the ocean environment. Gliders generally do not employ sophisticated sensors for underwater localization, but instead dead-reckon between set waypoints. Thus, these vehicles are subject to large positional errors between prescribed and actual surfacing locations. Here, we investigate the implementation of a large-scale, regional ocean model into the trajectory design for autonomous gliders to improve their navigational accuracy. We compute the dead-reckoning error for our Slocum gliders, and compare this to the average positional error recorded from multiple deployments conducted over the past year. We then compare trajectory plans computed on-board the vehicle during recent deployments to our prediction-based trajectory plans for 140 surfacing occurrences.
Resumo:
In recent years, ocean scientists have started to employ many new forms of technology as integral pieces in oceanographic data collection for the study and prediction of complex and dynamic ocean phenomena. One area of technological advancement in ocean sampling if the use of Autonomous Underwater Vehicles (AUVs) as mobile sensor plat- forms. Currently, most AUV deployments execute a lawnmower- type pattern or repeated transects for surveys and sampling missions. An advantage of these missions is that the regularity of the trajectory design generally makes it easier to extract the exact path of the vehicle via post-processing. However, if the deployment region for the pattern is poorly selected, the AUV can entirely miss collecting data during an event of specific interest. Here, we consider an innovative technology toolchain to assist in determining the deployment location and executed paths for AUVs to maximize scientific information gain about dynamically evolving ocean phenomena. In particular, we provide an assessment of computed paths based on ocean model predictions designed to put AUVs in the right place at the right time to gather data related to the understanding of algal and phytoplankton blooms.
Resumo:
Designing trajectories for a submerged rigid body motivates this paper. Two approaches are addressed: the time optimal approach and the motion planning ap- proach using concatenation of kinematic motions. We focus on the structure of singular extremals and their relation to the existence of rank-one kinematic reduc- tions; thereby linking the optimization problem to the inherent geometric frame- work. Using these kinematic reductions, we provide a solution to the motion plan- ning problem in the under-actuated scenario, or equivalently, in the case of actuator failures. We finish the paper comparing a time optimal trajectory to one formed by concatenation of pure motions.
Resumo:
Autonomous Underwater Vehicles (AUVs) are revolutionizing oceanography through their versatility, autonomy and endurance. However, they are still an underutilized technology. For coastal operations, the ability to track a certain feature is of interest to ocean scientists. Adaptive and predictive path planning requires frequent communication with significant data transfer. Currently, most AUVs rely on satellite phones as their primary communication. This communication protocol is expensive and slow. To reduce communication costs and provide adequate data transfer rates, we present a hardware modification along with a software system that provides an alternative robust disruption- tolerant communications framework enabling cost-effective glider operation in coastal regions. The framework is specifically designed to address multi-sensor deployments. We provide a system overview and present testing and coverage data for the network. Additionally, we include an application of ocean-model driven trajectory design, which can benefit from the use of this network and communication system. Simulation and implementation results are presented for single and multiple vehicle deployments. The presented combination of infrastructure, software development and deployment experience brings us closer to the goal of providing a reliable and cost-effective data transfer framework to enable real-time, optimal trajectory design, based on ocean model predictions, to gather in situ measurements of interesting and evolving ocean features and phenomena.