972 resultados para Insulin Secretion
Resumo:
Objective: Natural killer T (NKT) cells are efficiently targeted by HIV and severely reduced in numbers in the circulation of infected individuals. The functional capacity of the remaining NKT cells in HIV-infected individuals is poorly characterized. This study measured NKT cell cytokine production directly ex vivo and compared these responses with both the disease status and NKT subset distribution of individual patients. Methods: NKT cell frequencies, subsets, and ex-vivo effector functions were measured in the peripheral blood mononuclear cells of HIV-infected patients and healthy controls by flow cytometry. We measured cytokines from NKT cells after stimulation with either a-galactosyl ceramide-loaded CD1d dimers (DimerX-alpha GalCer) or phorbol myristate acetate and ionomycin. Results: The frequencies of NKT cells secreting interferon-gamma and tumor necrosis factor-alpha were significantly lower in HIV-infected patients than healthy controls after DimerX-alpha GalCer treatment, but responses were similar after treatment with phorbol myristate acetate and ionomycin. The magnitude of the interferon-gamma response to DimerX-alpha GalCer correlated inversely with the number of years of infection. Both interferon-gamma and tumor necrosis factor-alpha production in response to DimerX-alpha GalCer correlated inversely with CD161 expression. Conclusion: The ex-vivo Th1 responses of circulating NKT cells to CD1d-glycolipid complexes are impaired in HIV-infected patients. NKT cell functions may be progressively lost over time in HIV infection, and CD161 is implicated in the regulation of NKT cell responsiveness. (C) 2009 Wolters Kluwer Health vertical bar Lippincott Williams & Wilkins
Resumo:
P>Background The evolution and therapeutic outcome of American tegumentary leishmaniasis (ATL) depend upon many factors, including the balance between Th1 and Th2 cytokines to control parasite multiplication and lesion extension. Other cytokines known for their role in inflammatory processes such as interleukin IL-17 or IL-18 as well as factors controlling keratinocyte differentiation and the inflammatory process in the skin, like the Notch system, could also be involved in the disease outcome. Notch receptors are a group of transmembrane proteins that regulate cell fate decisions during development and adulthood in many tissues, including keratinocyte differentiation and T-cell lineage commitment, depending on their activation by specific groups of ligands (Delta-like or Jagged). Objectives To compare the in situ expression of Notch system proteins (receptors, ligands and transcriptional factors) and cytokines possibly involved in the disease outcome (IL-17, IL-18, IL-23 and transforming growth factor-beta) in ATL cutaneous and mucosal lesions, according to the response to therapy with N-methyl glucamine. Methods Cutaneous and mucosal biopsies obtained from patients prior to therapy with N-methyl glucamine were analysed by immunohistochemistry and real-time polymerase chain reaction. Results Notch receptors and Delta-like ligands were found increased in patients with ATL, particularly those with poor response to therapy or with mucosal lesions. Conclusions The increase of Notch receptors and Delta-like ligands in patients with a poor response to treatment suggests that these patients would require a more aggressive therapeutic approach or at least a more thorough and rigorous follow-up.
Resumo:
Background Recent physiological knowledge allows the design of bariatric procedures that aim at neuroendocrine changes instead of at restriction and malabsorption. Digestive adaptation is a surgical technique for obesity based in this rationale. Methods The technique includes a sleeve gastrectomy, an omentectomy and a jejunectomy that leaves initial jejunum and small bowel totaling at least 3 m (still within normal variation of adult human bowel length). Fasting ghrelin and resistin and fasting and postprandial GLP-1 and PYY were measured pre- and postoperatively. Results Patients: 228 patients with initial body mass index (BMI) varying from 35 to 51 kg/m(2); follow-up: I to 5 years; average EBMIL% was 79.7% in the first year; 77.7% in the second year; 71.6% in the third year; 68.9% in the fourth year. Patients present early satiety and major improvement in presurgical comorbidities, especially diabetes. Fasting ghrelin and resistin were significantly reduced (P<0.05); GLP-1 and PYY response to food ingestion was enhanced (P<0.05). Surgical complications (4.4%) were resolved without sequela and without mortality. There was neither diarrhea nor detected malabsorption. Conclusions Based on physiological and supported by evolutionary data, this procedure creates a proportionally reduced gastrointestinal (GI) tract that amplifies postprandial neuroendocrine responses. It leaves basic GI functions unharmed. It reduces production of ghrelin and resistin and takes more nutrients to be absorbed distally enhancing GLP-1 and PYY secretion. Diabetes was improved significantly without duodenal exclusion. The patients do not present symptoms nor need nutritional support or drug medication because of the procedure, which is safe to perform.
Resumo:
Culture filtrate proteins (CFP) are potential targets for tuberculosis vaccine development. We previously showed that despite the high level of gamma interferon (IFN-gamma) production elicited by homologous immunization with CFP plus CpG oligodeoxynucleotides (CFP/CpG), we did not observe protection when these mice were challenged with Mycobacterium tuberculosis. In order to use the IFN-gamma-inducing ability of CFP antigens, in this study we evaluated a prime-boost heterologous immunization based on CFP/CpG to boost Mycobacterium bovis BCG vaccination in order to find an immunization schedule that could induce protection. Heterologous BCG-CFP/CpG immunization provided significant protection against experimental tuberculosis, and this protection was sustained during the late phase of infection and was even better than that conferred by a single BCG immunization. The protection was associated with high levels of antigen-specific IFN-gamma and interleukin-17 (IL-17) and low IL-4 production. The deleterious role of IL-4 was confirmed when IL-4 knockout mice vaccinated with CFP/CpG showed consistent protection similar to that elicited by BCG-CFP/CpG heterologous immunization. These findings show that a single dose of CFP/CpG can represent a new strategy to boost the protection conferred by BCG vaccination. Moreover, different immunological parameters, such as IFN-gamma and IL-17 and tightly regulated IL-4 secretion, seem to contribute to the efficacy of this tuberculosis vaccine.
Resumo:
Nutrient sensitive insulin-like peptides (ILPs) have profound effects on invertebrate metabolism, nutrient storage, fertility and aging. Many insects transcribe ILPs in specialized neurosecretory cells at changing levels correlated with life history. However, the major site of insect metabolism and nutrient storage is not the brain, but rather the fat body, where functions of ILP expression are rarely studied and poorly understood. Fat body is analogous to mammalian liver and adipose tissue, with nutrient stores that often correlate with behavior. We used the honey bee (Apis mellifera), an insect with complex behavior, to test whether ILP genes in fat body respond to experimentally induced changes of behavioral physiology. Honey bee fat body influences endocrine state and behavior by secreting the yolk protein precursor vitellogenin (Vg), which suppresses lipophilic juvenile hormone and social foraging behavior. In a two-factorial experiment, we used RNA interference (RNAi)-mediated vg gene knockdown and amino acid nutrient enrichment of hemolymph (blood) to perturb this regulatory module. We document factor-specific changes in fat body ilp1 and ilp2 mRNA, the bee`s ILP-encoding genes, and confirm that our protocol affects social behavior. We show that ilp1 and ilp2 are regulated independently and differently and diverge in their specific expression-localization between fat body oenocyte and trophocyte cells. Insect ilp functions may be better understood by broadening research to account for expression in fat body and not only brain.
Resumo:
The insulin/insulin-like signaling (IIS) pathway is an evolutionarily conserved module in the control of body size and correlated organ growth in metazoans. In the highly eusocial bees, the caste phenotypes differ not only in size and several structural features but also in individual fitness and life history. We investigated the developmental expression profiles of genes encoding the two insulin-like peptides (AmILP-1 and AmILP-2) and the two insulin receptors (AmInR-1 and AmInR-2) predicted in the honey bee genome. Quantitative PCR analysis for queen and worker larvae in critical stages of caste development showed that AmILP-2 is the predominantly transcribed ILP in both castes, with higher expression in workers than in queens. Expression of both InR genes sharply declined in fourth instar queen larvae, but showed little modulation in workers. On first sight, these findings are non-intuitive, considering the higher growth rates of queens, but they can be interpreted as possibly antagonistic crosstalk between the IIS module and juvenile hormone. Analyzing AmInR-1 and AmInR-2 expression in ovaries of queen and worker larvae revealed low transcript levels in queens and a sharp drop in AmInR-2 expression in fifth instar worker larvae, indicating relative independence in tissue-specific versus overall IIS pathway activity. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Secondary hyperparathyroidism is a common complication in uremic patients. Total parathyroidectomy combined with partial autotransplantation into brachioradialis muscle has been the preference among the options for surgical treatment. This study was designed to evaluate the reserve and ability of suppression of autotransplanted parathyroid tissue using dynamics tests. We studied, prospectively, 12 patients in recent (RP) and late (LP) postoperative of total parathyroidectomy with autotransplantation. For analysis of the secretory reserve capacity, we induced hypocalcemia by ethylenediaminetetraacetic acid (EDTA) infusion. Furthermore, for analysis of the ability for parathyroid hormone (PTH) suppression, the hypercalcemia test was used, by intravenous administration of calcium in LP. In RP, there was a decrease in the average serum levels of PTH, phosphorus, and alkaline phosphatase, which ranged from 13 to 231 (87 +/- A 65) pg/ml, 2.3 to 6.2 (3.3 +/- A 1.1) mg/dl, and 77 to 504 (250 +/- A 135) U/L, respectively, similar to that observed in LP. The analysis of the average curve of variations in PTH during testing of the stimulus with EDTA showed lack of secretion in RP and partial response in LP. Impaired suppression ability of the graft in LP was observed in the test with intravenous calcium. Total parathyroidectomy followed by partial autotransplantation was effective in reducing PTH serum levels in patients with terminal kidney disease. The elevation of serum calcium during the suppression test was not able to inhibit the autograft gland secretion of PTH. The assessment of parathyroid graft function demonstrated an inability to respond to the stimulus of hypocalcemia induced by EDTA, although there was a partial recovery, in late postoperative period.
Resumo:
This study compared the effects of administering rosiglitazone (RSG) vs pioglitazone (PIO) oil cardiovascular disease risk factors in insulin-resistant. nondiabetic individuals with no apparent disease. Twenty-two nondiabetic, apparently healthy individuals, classified as being insulin resistant oil the basis of a steady-state plasma glucose concentration of at least 10 mmol/L during the insulin suppression test, were treated with either RSG or 1110 for 3 months. Measurements were made before and after drug treatment of weight; blood pressure; fasting and daylong glucose, insulin, and free fatty acid (FFA) levels; and lipid and lipoprotein concentrations. Insulin sensitivity (steady-state plasma glucose concentration) significantly improved in both treatment groups, associated with significant decreases in daylong plasma concentrations of glucose, insulin, and FFA. Diastolic blood pressure fell somewhat in both groups, and this change reached significance in those receiving PIO. Improvement in lipid metabolism was confined to the PIO-treated group, signified by a significant decrease in plasma triglyceride concentration, whereas triglyceride concentration did not decline in the RSG-treated group, and these individuals also had increases in total (P = .047) and low-density lipoprotein cholesterol (P = .07). In conclusion, RSG and PIO appear to have comparable abilities to improve insulin sensitivity and lower daylong glucose, insulin, and FFA concentrations in nondiabetic, insulin-resistant individuals. However, despite these similarities, their effects on lipoprotein metabolism seem to be quite different, with beneficial effects confined to PIO-treated individuals. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
BACKGROUND There is evidence that the subgroup of patients with essential hypertension who are also insulin resistant is at increased risk of cardiovascular disease (CVD). We are unaware of the frequency of insulin resistance in patients with essential hypertension as well as the CVD risk in this subgroup of patients. This analysis was aimed at providing the prevalence of insulin resistance and associated CVD risk factors in treated and untreated patients with essential hypertension. METHODS The study population consisted of 126 patients with hypertension: 56 untreated and 70 in a stable treatment program. Body mass index (BMI), blood pressure, plasma glucose and insulin responses to an oral glucose challenge, lipid and lipoprotein concentrations, and steady-state plasma glucose (SSPG) concentration during the insulin suppression test were measured. Insulin resistance was defined operationally as a SSPG concentration >180 mg/dl. RESULTS Demographic characteristics and metabolic CVD risk factors were comparable in both groups, with 30-50% of both treated and untreated patients having abnormalities of all risk factors measured. Approximately 50% of patients met the criteria for insulin resistance in both groups, and the prevalence of abnormal CVD risk factors in this group was increased two to threefold as compared to the other half of the subjects. CONCLUSIONS Approximately 50% of patients with essential hypertension, both treated and untreated, appear to be insulin resistant, and CVD risk factors are greatly accentuated in this subset of patients.
Resumo:
Objective: The physiological role of parathormone (PTH) in the maintenance of bone mass in humans has not been fully defined. The main objective of the present study was to evaluate basal and EDTA-stimulated PTH levels in Young women (Group Y = 30.9 years, N = 7) and in women in late menopause (Group M = 64.7 years, N = 7) and their relationship to bone mineral density. Methods: The PTH secretion test was performed by induction of hypocalcemia through intravenous administration of EDTA for 2 h. Blood samples were collected every 10 min and used for ionic calcium and PTH measurements. During the basal period, an additional sample was collected for the determination of osteocalcin, FSH, and estradiol. A sample of early morning second voided urine was collected for analysis of deoxypiridinoline and creatinine Lis well as bone mass density (BMD) was determined by dual X-ray energy absorptiometry (DEXA). Results: The aged patients presented lower femoral BMD (Y = 0.860 g/cm(2) vs. M = 0.690 g/cm(2), P < 0.01), With four of them having a T score lower than - 2.5 S.D. Basal, and during the EDTA infusion, PTH values were similar in both groups. However, among aged volunteers, the rise in PTH levels was higher for subjects with normal bone mass (NM: peak = 236 pg/ml) than for subjects with osteoporosis (OM: peak = 134.4 pg/ml). Conclusions: The present results suggest that PTH can have a modulating effect on the rate of bone loss during late menopause. (c) 2007 Elsevier Ireland Ltd. All rights reserved.
Resumo:
P>Progress in understanding the pathophysiology of abdominal aortic aneurysms (AAA) is dependent in part on the development and application of effective animal models that recapitulate key aspects of the disease. The objective was to produce an experimental model of AAA in rats by combining two potential causes of metalloproteinase (MMP) secretion: inflammation and turbulent blood flow. Male Wistar rats were randomly divided in four groups: Injury, Stenosis, Aneurysm and Control (40/group). The Injury group received a traumatic injury to the external aortic wall. The Stenosis group received an extrinsic stenosis at a corresponding location. The Aneurysm group received both the injury and stenosis simultaneously, and the Control group received a sham operation. Animals were euthanized at days 1, 3, 7 and 15. Aorta and/or aneurysms were collected and the fragments were fixed for morphologic, immunohistochemistry and morphometric analyses or frozen for MMP assays. AAAs had developed by day 3 in 60-70% of the animals, reaching an aortic dilatation ratio of more than 300%, exhibiting intense wall remodelling initiated at the adventitia and characterized by an obvious inflammatory infiltrate, mesenchymal proliferation, neoangiogenesis, elastin degradation and collagen deposition. Immunohistochemistry and zymography studies displayed significantly increased expressions of MMP-2 and MMP-9 in aneurysm walls compared to other groups. The haemo-dynamic alterations caused by the stenosis may have provided additional contribution to the MMPs liberation. This new model illustrated that AAA can be multifactorial and confirmed the key roles of MMP-2 and MMP-9 in this dynamic remodelling process.
Resumo:
Secretion of vasopressin (VP), oxytocin (OT) and atrial natriuretic peptide (ANP) is an essential mechanism for the maintenance of hydromineral homeostasis. Secretion of these hormones is modulated by several circulating factors, including oestradiol. However, it remains unclear how oestradiol exerts this modulation. In the present study we investigated the participation of oestradiol in the secretion of VP, OT and ANP and in activation of vasopressinergic and oxytocinergic neurones of the supraoptic (SON) and paraventricular (PVN) nuclei of the hypothalamus in response to extracellular volume expansion (EVE). For this purpose, ovariectomised (OVX) rats treated for 7 days with vehicle (corn oil, 0.1 ml/rat, OVX+O group) or oestradiol (oestradiol cypionate, 10 mu g/kg, OVX+E group) were subjected to either isotonic (0.15 m NaCl, 2 ml/100 g b.w., i.v.) or hypertonic (0.30 m NaCl, 2 ml/100 g b.w., i.v.) EVE. Blood samples were collected for plasma VP, OT and ANP determination. Another group of rats was subjected to cerebral perfusion, and brain sections were processed for c-Fos-VP and c-Fos-OT double-labelling immunohistochemistry. In OVX+O rats, we observed that both isotonic and hypertonic EVE increased plasma OT and ANP concentrations, although no changes were observed in VP secretion. Oestradiol replacement did not alter hormonal secretion in response to isotonic EVE, but it increased VP secretion and potentiated plasma OT and ANP concentrations in response to hypertonic EVE. Immunohistochemical data showed that, in the OVX+O group, hypertonic EVE increased the number of c-Fos-OT and c-Fos-VP double-labelled neurones in the PVN and SON. Oestradiol replacement did not alter neuronal activation in response to isotonic EVE, but it potentiated vasopressinergic and oxytocinergic neuronal activation in the medial magnocellular PVN (PaMM) and SON. Taken together, these results suggest that oestradiol increases the responsiveness of vasopressinergic and oxytocinergic magnocellular neurones in the PVN and SON in response to osmotic stimulation.
Resumo:
OT (oxytocin) is secreted from the posterior pituitary gland, and its secretion has been shown to be modulated by NO (nitric oxide). In rats, OT secretion is also stimulated by hyperosmolarity of the extracellular fluid. Furthermore, NOS (nitric oxide synthase) is located in hypothalamic areas involved in fluid balance control. In the present study, we evaluated the role of the NOS/NO and HO (haem oxygenase)/CO (carbon monoxide) systems in the osmotic regulation of OT release from rat hypothalamus in vitro. We conducted experiments on hypothalamic fragments to determine the following: (i) whether NO donors and NOS inhibitors modulate OT release and (ii) whether the changes in OT response occur concurrently with changes in NOS or HO activity in the hypothalamus. Hyperosmotic stimulation induced a significant increase in OT release that was associated with a reduction in nitrite production. Osmotic stimulation of OT release was inhibited by NO donors. NOS inhibitors did not affect either basal or osmotically stimulated OT release. Blockade of HO inhibited both basal and osmotically stimulated OT release, and induced a marked increase in NOS activity. These results indicate the involvement of CO in the regulation of NOS activity. The present data demonstrate that hypothalamic OT release induced by osmotic stimuli is modulated, at least in part, by interactions between NO and CO.
Resumo:
The endocannabinoid system includes important signaling molecules that are involved in several homeostatic and neuroendocrine functions. In the present study, we evaluated the effects of the type 1 cannabinoid (CB(1)) receptor antagonist, rimonabant (10 mg/kg, p.o.), on hormone secretion, neuronal activation and mRNA expression in the hypothalamus following isotonic (I-) or hypertonic (H-) extracellular volume expansion (EVE). The total nitrate content in the PVN and SON was also assessed under the same experimental conditions. Our results showed that OT and AVP plasma concentrations were increased in response to H-EVE, while decreased AVP levels were found following I-EVE. Accordingly, both I- and H-EVE stimulated oxytocinergic neuronal activation, as evidenced by the increased number of c-Fos/OT double labeled neurons in the hypothalamus. The vasopressinergic cells of the PVN and SON, however, were only activated in response to H-EVE. Furthermore, increased amounts of both AVP and OT mRNAs were found in the hypothalamus following EVE. Pretreatment with rimonabant significantly potentiated hormone secretion and also vasopressinergic and oxytocinergic neuronal activation induced by EVE, although decreased AVP and OT mRNA expression was found in the hypothalami of rimonabant pretreated groups. In addition, the nitrate content in the PVN and SON was not altered in response to EVE or rimonabant pretreatment. Taken together, these results suggest that the CB(1) receptor may modulate several events that contribute to the development of appropriate responses to increased fluid volume and osmolality. (C) 2010 Elsevier Inc. All rights reserved.