642 resultados para Instabilities
Resumo:
While the robots gradually become a part of our daily lives, they already play vital roles in many critical operations. Some of these critical tasks include surgeries, battlefield operations, and tasks that take place in hazardous environments or distant locations such as space missions. ^ In most of these tasks, remotely controlled robots are used instead of autonomous robots. This special area of robotics is called teleoperation. Teleoperation systems must be reliable when used in critical tasks; hence, all of the subsystems must be dependable even under a subsystem or communication line failure. ^ These systems are categorized as unilateral or bilateral teleoperation. A special type of bilateral teleoperation is described as force-reflecting teleoperation, which is further investigated as limited- and unlimited-workspace teleoperation. ^ Teleoperation systems configured in this study are tested both in numerical simulations and experiments. A new method, Virtual Rapid Robot Prototyping, is introduced to create system models rapidly and accurately. This method is then extended to configure experimental setups with actual master systems working with system models of the slave robots accompanied with virtual reality screens as well as the actual slaves. Fault-tolerant design and modeling of the master and slave systems are also addressed at different levels to prevent subsystem failure. ^ Teleoperation controllers are designed to compensate for instabilities due to communication time delays. Modifications to the existing controllers are proposed to configure a controller that is reliable in communication line failures. Position/force controllers are also introduced for master and/or slave robots. Later, controller architecture changes are discussed in order to make these controllers dependable even in systems experiencing communication problems. ^ The customary and proposed controllers for teleoperation systems are tested in numerical simulations on single- and multi-DOF teleoperation systems. Experimental studies are then conducted on seven different systems that included limited- and unlimited-workspace teleoperation to verify and improve simulation studies. ^ Experiments of the proposed controllers were successful relative to the customary controllers. Overall, by employing the fault-tolerance features and the proposed controllers, a more reliable teleoperation system is possible to design and configure which allows these systems to be used in a wider range of critical missions. ^
Resumo:
While the robots gradually become a part of our daily lives, they already play vital roles in many critical operations. Some of these critical tasks include surgeries, battlefield operations, and tasks that take place in hazardous environments or distant locations such as space missions. In most of these tasks, remotely controlled robots are used instead of autonomous robots. This special area of robotics is called teleoperation. Teleoperation systems must be reliable when used in critical tasks; hence, all of the subsystems must be dependable even under a subsystem or communication line failure. These systems are categorized as unilateral or bilateral teleoperation. A special type of bilateral teleoperation is described as force-reflecting teleoperation, which is further investigated as limited- and unlimited-workspace teleoperation. Teleoperation systems configured in this study are tested both in numerical simulations and experiments. A new method, Virtual Rapid Robot Prototyping, is introduced to create system models rapidly and accurately. This method is then extended to configure experimental setups with actual master systems working with system models of the slave robots accompanied with virtual reality screens as well as the actual slaves. Fault-tolerant design and modeling of the master and slave systems are also addressed at different levels to prevent subsystem failure. Teleoperation controllers are designed to compensate for instabilities due to communication time delays. Modifications to the existing controllers are proposed to configure a controller that is reliable in communication line failures. Position/force controllers are also introduced for master and/or slave robots. Later, controller architecture changes are discussed in order to make these controllers dependable even in systems experiencing communication problems. The customary and proposed controllers for teleoperation systems are tested in numerical simulations on single- and multi-DOF teleoperation systems. Experimental studies are then conducted on seven different systems that included limited- and unlimited-workspace teleoperation to verify and improve simulation studies. Experiments of the proposed controllers were successful relative to the customary controllers. Overall, by employing the fault-tolerance features and the proposed controllers, a more reliable teleoperation system is possible to design and configure which allows these systems to be used in a wider range of critical missions.
Resumo:
This data set includes measurements from moored instruments from the Faroe Bank Channel overflow region in the period between 28 May 2012 and 5 June 2013. The data set was collected under the project entitled "Faroe Bank Channel Overflow: Dynamics and Mixing Research", with an objective to describe the structure and variability of the dense oceanic overflow plume from the Faroe Bank Channel on daily to seasonal timescales. Mooring arrays were deployed in two sections: located 25 km downstream of the main sill, in the channel that geographically confines the overflow plume at both edges (section C), and 60 km further downstream, over the slope (section S). The measurements delivered with this data set include hourly-averaged data gridded on 5-m vertical separation, after accounting for mooring knock downs using a mooring dynamics model. Complete set of mooring drawings and detailed description can be found in the cruise report (Fer et al. 2016, PDF provided). The article by Ullgren et al. (2016) gives further details on processing of the data set and presents the data set.
Resumo:
Geometric frustration occurs in the rare earth pyrochlores due to magnetic rare earth ions occupying the vertices of the network of corner-sharing tetrahedra. In this research, we have two parts. In the first one we study the phase transition to the magnetically ordered state at low temperature in the pyrochlore Er₂Ti₂O₇. The molecular field method was used to solve this problem. In the second part, we analyse the crystal electric field Hamiltonian for the rare earth sites. The rather large degeneracy of the angular momentum J of the rare earth ion is lifted by the crystal electric field due to the neighboring ions in the crystal. By rewriting the Stevens operators in the crystal electric field Hamiltonian ᴴCEF in terms of charge quadruple operators, we can identify unstable order parameters in ᴴCEF . These may be related to lattice instabilities in Tb₂Ti₂O₇.
Resumo:
Emergence of coherent structures and patterns at the nonlinear stage of modulation instability of a uniform state is an inherent feature of many biological, physical and engineering systems. There are several well-studied classical modulation instabilities, such as Benjamin-Feir, Turing and Faraday instability, which play a critical role in the self-organization of energy and matter in non-equilibrium physical, chemical and biological systems. Here we experimentally demonstrate the dissipative Faraday instability induced by spatially periodic zig-zag modulation of a dissipative parameter of the system - spectrally dependent losses - achieving generation of temporal patterns and high-harmonic mode-locking in a fibre laser. We demonstrate features of this instability that distinguish it from both the Benjamin-Feir and the purely dispersive Faraday instability. Our results open the possibilities for new designs of mode-locked lasers and can be extended to other fields of physics and engineering.
Resumo:
For an Erbium-doped mode locked fibre laser, we demonstrate experimentally a new type of vector rogue waves (RWs) emergence of which is caused by the coherent coupling of the orthogonal states of polarisation (SOPs). Unlike weak interaction between neighbouring dissipative solitons for the soliton rain, this creates a new type of the energy landscape where the interaction of the orthogonal SOPs leads to polarisation trapping or escapes from the trapping triggered by polarisation instabilities and so results in the pulse dynamics satisfying criteria of the 'dark' and 'bright' RWs. The obtained results, apart from the fundamental interest, can provide a base for development of the rogue waves mitigation techniques in the context of the applications in photonics and beyond.
Resumo:
We study the dynamical properties of the RZ-DPSK encoded sequences of bits, focusing on the instabilities in the train leading to the bit stream corruption. The problem is studied within the framework of the complex Toda chain model for optical solitons. We show how the bit composition of the pattern affects the initial stage of the train dynamics and explain the general mechanisms of the appearance of unstable collective soliton modes. Then we discuss the nonlinear regime using the asymptotic properties of the pulse stream at large propagation distances and analyze the dynamical behavior of the train elucidating different scenarios for the pattern instabilities. ©2010 Crown.
Resumo:
We study the dynamical properties of the RZ-DPSK encoded sequences, focusing on the instabilities in the soliton train leading to the distortions of the information transmitted. The problem is reformulated within the framework of complex Toda chain model which allows one to carry out the simplified description of the optical soliton dynamics. We elucidate how the bit composition of the pattern affects the initial (linear) stage of the train dynamics and explain the general mechanisms of the appearance of unstable collective soliton modes. Then we discuss the nonlinear regime using asymptotic properties of the pulse stream at large propagation distances and analyze the dynamical behavior of the train classifying different scenarios for the pattern instabilities. Both approaches are based on the machinery of Hermitian and non-Hermitian lattice analysis. © 2010 IEEE.