795 resultados para Inquiry based teaching of mathematics
Resumo:
BACKGROUND Moraxella catarrhalis, a major nasopharyngeal pathogen of the human respiratory tract, is exposed to rapid downshifts of environmental temperature when humans breathe cold air. The prevalence of pharyngeal colonization and respiratory tract infections caused by M. catarrhalis is greatest in winter. We investigated how M. catarrhalis uses the physiologic exposure to cold air to regulate pivotal survival systems that may contribute to M. catarrhalis virulence. RESULTS In this study we used the RNA-seq techniques to quantitatively catalogue the transcriptome of M. catarrhalis exposed to a 26 °C cold shock or to continuous growth at 37 °C. Validation of RNA-seq data using quantitative RT-PCR analysis demonstrated the RNA-seq results to be highly reliable. We observed that a 26 °C cold shock induces the expression of genes that in other bacteria have been related to virulence a strong induction was observed for genes involved in high affinity phosphate transport and iron acquisition, indicating that M. catarrhalis makes a better use of both phosphate and iron resources after exposure to cold shock. We detected the induction of genes involved in nitrogen metabolism, as well as several outer membrane proteins, including ompA, m35-like porin and multidrug efflux pump (acrAB) indicating that M. catarrhalis remodels its membrane components in response to downshift of temperature. Furthermore, we demonstrate that a 26 °C cold shock enhances the induction of genes encoding the type IV pili that are essential for natural transformation, and increases the genetic competence of M. catarrhalis, which may facilitate the rapid spread and acquisition of novel virulence-associated genes. CONCLUSION Cold shock at a physiologically relevant temperature of 26 °C induces in M. catarrhalis a complex of adaptive mechanisms that could convey novel pathogenic functions and may contribute to enhanced colonization and virulence.
Resumo:
In cattle, at least 39 variants of the 4 casein proteins (α(S1)-, β-, α(S2)- and κ-casein) have been described to date. Many of these variants are known to affect milk-production traits, cheese-processing properties, and the nutritive value of milk. They also provide valuable information for phylogenetic studies. So far, the majority of studies exploring the genetic variability of bovine caseins considered European taurine cattle breeds and were carried out at the protein level by electrophoretic techniques. This only allows the identification of variants that, due to amino acid exchanges, differ in their electric charge, molecular weight, or isoelectric point. In this study, the open reading frames of the casein genes CSN1S1, CSN2, CSN1S2, and CSN3 of 356 animals belonging to 14 taurine and 3 indicine cattle breeds were sequenced. With this approach, we identified 23 alleles, including 5 new DNA sequence variants, with a predicted effect on the protein sequence. The new variants were only found in indicine breeds and in one local Iranian breed, which has been phenotypically classified as a taurine breed. A multidimensional scaling approach based on available SNP chip data, however, revealed an admixture of taurine and indicine populations in this breed as well as in the local Iranian breed Golpayegani. Specific indicine casein alleles were also identified in a few European taurine breeds, indicating the introgression of indicine breeds into these populations. This study shows the existence of substantial undiscovered genetic variability of bovine casein loci, especially in indicine cattle breeds. The identification of new variants is a valuable tool for phylogenetic studies and investigations into the evolution of the milk protein genes.
Resumo:
The scaphoid is the most frequently fractured carpal bone. When investigating fixation stability, which may influence healing, knowledge of forces and moments acting on the scaphoid is essential. The aim of this study was to evaluate cartilage contact forces acting on the intact scaphoid in various functional wrist positions using finite element modeling. A novel methodology was utilized as an attempt to overcome some limitations of earlier studies, namely, relatively coarse imaging resolution to assess geometry, assumption of idealized cartilage thicknesses and neglected cartilage pre-stresses in the unloaded joint. Carpal bone positions and articular cartilage geometry were obtained independently by means of high resolution CT imaging and incorporated into finite element (FE) models of the human wrist in eight functional positions. Displacement driven FE analyses were used to resolve inter-penetration of cartilage layers, and provided contact areas, forces and pressure distribution for the scaphoid bone. The results were in the range reported by previous studies. Novel findings of this study were: (i) cartilage thickness was found to be heterogeneous for each bone and vary considerably between carpal bones; (ii) this heterogeneity largely influenced the FE results and (iii) the forces acting on the scaphoid in the unloaded wrist were found to be significant. As major limitations, accuracy of the method was found to be relatively low, and the results could not be compared to independent experiments. The obtained results will be used in a following study to evaluate existing and recently developed screws used to fix scaphoid fractures.
Resumo:
High-resolution quantitative computed tomography (HRQCT)-based analysis of spinal bone density and microstructure, finite element analysis (FEA), and DXA were used to investigate the vertebral bone status of men with glucocorticoid-induced osteoporosis (GIO). DXA of L1–L3 and total hip, QCT of L1–L3, and HRQCT of T12 were available for 73 men (54.6±14.0years) with GIO. Prevalent vertebral fracture status was evaluated on radiographs using a semi-quantitative (SQ) score (normal=0 to severe fracture=3), and the spinal deformity index (SDI) score (sum of SQ scores of T4 to L4 vertebrae). Thirty-one (42.4%) subjects had prevalent vertebral fractures. Cortical BMD (Ct.BMD) and thickness (Ct.Th), trabecular BMD (Tb.BMD), apparent trabecular bone volume fraction (app.BV/TV), and apparent trabecular separation (app.Tb.Sp) were analyzed by HRQCT. Stiffness and strength of T12 were computed by HRQCT-based nonlinear FEA for axial compression, anterior bending and axial torsion. In logistic regressions adjusted for age, glucocorticoid dose and osteoporosis treatment, Tb.BMD was most closely associated with vertebral fracture status (standardized odds ratio [sOR]: Tb.BMD T12: 4.05 [95% CI: 1.8–9.0], Tb.BMD L1–L3: 3.95 [1.8–8.9]). Strength divided by cross-sectional area for axial compression showed the most significant association with spine fracture status among FEA variables (2.56 [1.29–5.07]). SDI was best predicted by a microstructural model using Ct.Th and app.Tb.Sp (r2=0.57, p<0.001). Spinal or hip DXA measurements did not show significant associations with fracture status or severity. In this cross-sectional study of males with GIO, QCT, HRQCT-based measurements and FEA variables were superior to DXA in discriminating between patients of differing prevalent vertebral fracture status. A microstructural model combining aspects of cortical and trabecular bone reflected fracture severity most accurately.
Resumo:
AIMS Follicular thyroid carcinoma (FTC) has been a diagnostic challenge for decades. The PAX8-PPARγ rearrangement has been detected in FTC and classic papillary thyroid carcinomas (PTCs). The aims of this study were to assess the presence of PAX8-PPARγ by using tissue microarrays in a large cohort of different thyroid neoplasms, and to assess its diagnostic and prognostic implications. METHODS AND RESULTS Fluorescence in-situ hybridization (FISH) analysis for PAX8-PPARγ was performed on 226 thyroid tumours, comprising FTCs (n = 59), PTCs (n = 126), poorly differentiated thyroid carcinomas (PDs; n = 34), follicular thyroid adenomas (FTAs; n = 5), and follicular tumours of unknown malignant potential (FTUMPs; n = 2). PAX8-PPARγ was detected in 12% of FTCs, 1% of PTCs, 7% of PDs, and in both cases of FTUMP. There was no correlation between the extent of capsular or vascular invasion and PAX8-PPARγ, or between lymph node or haematogenous metastasis and PAX8-PPARγ. Overall survival (OS), tumour-specific survival (TSS) and relapse-free-survival (RFS) were not influenced by PAX8-PPARγ. CONCLUSIONS In this study, we demonstrate for the first time the presence of PAX8-PPARγ in PDs and FTUMPs, whereas in FTCs and PTCs the prevalence of PAX8-PPARγ is lower than previously reported. PAX8-PPARγ did not correlate with invasiveness or affect prognosis in any tumour type.
Resumo:
PURPOSE Segmentation of the proximal femur in digital antero-posterior (AP) pelvic radiographs is required to create a three-dimensional model of the hip joint for use in planning and treatment. However, manually extracting the femoral contour is tedious and prone to subjective bias, while automatic segmentation must accommodate poor image quality, anatomical structure overlap, and femur deformity. A new method was developed for femur segmentation in AP pelvic radiographs. METHODS Using manual annotations on 100 AP pelvic radiographs, a statistical shape model (SSM) and a statistical appearance model (SAM) of the femur contour were constructed. The SSM and SAM were used to segment new AP pelvic radiographs with a three-stage approach. At initialization, the mean SSM model is coarsely registered to the femur in the AP radiograph through a scaled rigid registration. Mahalanobis distance defined on the SAM is employed as the search criteria for each annotated suggested landmark location. Dynamic programming was used to eliminate ambiguities. After all landmarks are assigned, a regularized non-rigid registration method deforms the current mean shape of SSM to produce a new segmentation of proximal femur. The second and third stages are iteratively executed to convergence. RESULTS A set of 100 clinical AP pelvic radiographs (not used for training) were evaluated. The mean segmentation error was [Formula: see text], requiring [Formula: see text] s per case when implemented with Matlab. The influence of the initialization on segmentation results was tested by six clinicians, demonstrating no significance difference. CONCLUSIONS A fast, robust and accurate method for femur segmentation in digital AP pelvic radiographs was developed by combining SSM and SAM with dynamic programming. This method can be extended to segmentation of other bony structures such as the pelvis.
Devices in heart failure: potential methods for device-based monitoring of congestive heart failure.
Resumo:
Congestive heart failure has long been one of the most serious medical conditions in the United States; in fact, in the United States alone, heart failure accounts for 6.5 million days of hospitalization each year. One important goal of heart-failure therapy is to inhibit the progression of congestive heart failure through pharmacologic and device-based therapies. Therefore, there have been efforts to develop device-based therapies aimed at improving cardiac reserve and optimizing pump function to meet metabolic requirements. The course of congestive heart failure is often worsened by other conditions, including new-onset arrhythmias, ischemia and infarction, valvulopathy, decompensation, end-organ damage, and therapeutic refractoriness, that have an impact on outcomes. The onset of such conditions is sometimes heralded by subtle pathophysiologic changes, and the timely identification of these changes may promote the use of preventive measures. Consequently, device-based methods could in the future have an important role in the timely identification of the subtle pathophysiologic changes associated with congestive heart failure.
Resumo:
Advances in radiotherapy have generated increased interest in comparative studies of treatment techniques and their effectiveness. In this respect, pediatric patients are of specific interest because of their sensitivity to radiation induced second cancers. However, due to the rarity of childhood cancers and the long latency of second cancers, large sample sizes are unavailable for the epidemiological study of contemporary radiotherapy treatments. Additionally, when specific treatments are considered, such as proton therapy, sample sizes are further reduced due to the rareness of such treatments. We propose a method to improve statistical power in micro clinical trials. Specifically, we use a more biologically relevant quantity, cancer equivalent dose (DCE), to estimate risk instead of mean absorbed dose (DMA). Our objective was to demonstrate that when DCE is used fewer subjects are needed for clinical trials. Thus, we compared the impact of DCE vs. DMA on sample size in a virtual clinical trial that estimated risk for second cancer (SC) in the thyroid following craniospinal irradiation (CSI) of pediatric patients using protons vs. photons. Dose reconstruction, risk models, and statistical analysis were used to evaluate SC risk from therapeutic and stray radiation from CSI for 18 patients. Absorbed dose was calculated in two ways: with (1) traditional DMA and (2) with DCE. DCE and DMA values were used to estimate relative risk of SC incidence (RRCE and RRMA, respectively) after proton vs. photon CSI. Ratios of RR for proton vs. photon CSI (RRRCE and RRRMA) were then used in comparative estimations of sample size to determine the minimal number of patients needed to maintain 80% statistical power when using DCE vs. DMA. For all patients, we found that protons substantially reduced the risk of developing a second thyroid cancer when compared to photon therapy. Mean RRR values were 0.052±0.014 and 0.087±0.021 for RRRMA and RRRCE, respectively. However, we did not find that use of DCE reduced the number of patents needed for acceptable statistical power (i.e, 80%). In fact, when considerations were made for RRR values that met equipoise requirements and the need for descriptive statistics, the minimum number of patients needed for a micro-clinical trial increased from 17 using DMA to 37 using DCE. Subsequent analyses revealed that for our sample, the most influential factor in determining variations in sample size was the experimental standard deviation of estimates for RRR across the patient sample. Additionally, because the relative uncertainty in dose from proton CSI was so much larger (on the order of 2000 times larger) than the other uncertainty terms, it dominated the uncertainty in RRR. Thus, we found that use of corrections for cell sterilization, in the form of DCE, may be an important and underappreciated consideration in the design of clinical trials and radio-epidemiological studies. In addition, the accurate application of cell sterilization to thyroid dose was sensitive to variations in absorbed dose, especially for proton CSI, which may stem from errors in patient positioning, range calculation, and other aspects of treatment planning and delivery.
Resumo:
Background Atrial fibrillation (AF) is common and may have severe consequences. Continuous long-term electrocardiogram (ECG) is widely used for AF screening. Recently, commercial ECG analysis software was launched, which automatically detects AF in long-term ECGs. It has been claimed that such tools offer reliable AF screening and save time for ECG analysis. However, this has not been investigated in a real-life patient cohort. Objective To investigate the performance of automatic software-based screening for AF in long-term ECGs. Methods Two independent physicians manually screened 22,601 hours of continuous long-term ECGs from 150 patients for AF. Presence, number, and duration of AF episodes were registered. Subsequently, the recordings were screened for AF by an established ECG analysis software (Pathfinder SL), and its performance was validated against the thorough manual analysis (gold standard). Results Sensitivity and specificity for AF detection was 98.5% (95% confidence interval 91.72%–99.96%) and 80.21% (95% confidence interval 70.83%–87.64%), respectively. Software-based AF detection was inferior to manual analysis by physicians (P < .0001). Median AF duration was underestimated (19.4 hours vs 22.1 hours; P < .001) and median number of AF episodes was overestimated (32 episodes vs 2 episodes; P < .001) by the software. In comparison to extensive quantitative manual ECG analysis, software-based analysis saved time (2 minutes vs 19 minutes; P < .001). Conclusion Owing to its high sensitivity and ability to save time, software-based ECG analysis may be used as a screening tool for AF. An additional manual confirmatory analysis may be required to reduce the number of false-positive findings.
Resumo:
Previous analyses of aortic displacement and distension using computed tomography angiography (CTA) were performed on double-oblique multi-planar reformations and did not consider through-plane motion. The aim of this study was to overcome this limitation by using a novel computational approach for the assessment of thoracic aortic displacement and distension in their true four-dimensional extent. Vessel segmentation with landmark tracking was executed on CTA of 24 patients without evidence of aortic disease. Distension magnitudes and maximum displacement vectors (MDV) including their direction were analyzed at 5 aortic locations: left coronary artery (COR), mid-ascending aorta (ASC), brachiocephalic trunk (BCT), left subclavian artery (LSA), descending aorta (DES). Distension was highest for COR (2.3 ± 1.2 mm) and BCT (1.7 ± 1.1 mm) compared with ASC, LSA, and DES (p < 0.005). MDV decreased from COR to LSA (p < 0.005) and was highest for COR (6.2 ± 2.0 mm) and ASC (3.8 ± 1.9 mm). Displacement was directed towards left and anterior at COR and ASC. Craniocaudal displacement at COR and ASC was 1.3 ± 0.8 and 0.3 ± 0.3 mm. At BCT, LSA, and DES no predominant displacement direction was observable. Vessel displacement and wall distension are highest in the ascending aorta, and ascending aortic displacement is primarily directed towards left and anterior. Craniocaudal displacement remains low even close to the left cardiac ventricle.
Resumo:
Volunteer research in sports clubs has paid hardly any attention to the individual expectations even though matching conditions to the specific volunteer’s expectations represents a major management challenge. This article presents a person-oriented approach to the expectation profiles of volunteers that delivers the basis for identifying different volunteer segments. The approach assumes explicitly that volunteers in sports clubs develop specific expectations regarding their working conditions. These expectations were determined in a sample of 441 members of 45 selected sports clubs. Proximately, a cluster analysis revealed that volunteers vary in their expectations regarding voluntary work. Four different types of volunteers could be identified: (1) recognition seekers, (2) material incentive seekers, (3) participation and communication seekers, and (4) support seekers. These “expectation-based volunteer types” could also be characterized in socioeconomic, membershiprelated, and volunteer-work-related terms. These types could serve as a basis for designing specific voluntary work conditions in sports clubs.