842 resultados para Input-output model
Resumo:
This output is a collection of compositions which explore issues of ensemble improvisation, ensemble management and orchestration, real-time and distributed scoring, multi-nodal inputs and outputs, and animated and graphic notation. Compositions include: Activities I; tutti, duet, trio, solo, quartet; Lewitt Notations I; Webwork I; and Sometimes I feel the space between people (voices) in terms of tempos. These compositions are presented in computer animated scores which are synchronized through the network and subject to real-time modification and control. They can be performed by ensembles distributed over large physical spaces connected by the network. The scores for these compositions include software which displays the animations to the performers, software to structure and disseminate score events, and triggering software that allows the control of a performance to be distributed. Scores can also include live electronics which are coordinated with graphic events.
Resumo:
This brief investigates a possible application of the inverse Preisach model in combination with the feedforward and feedback control strategies to control shape memory alloy actuators. In the feedforward control design, a fuzzy-based inverse Preisach model is used to compensate for the hysteresis nonlinearity effect. An extrema input history and a fuzzy inference is utilized to replace the inverse classical Preisach model. This work allows for a reduction in the number of experimental parameters and computation time for the inversion of the classical Preisach model. A proportional-integral-derivative (PID) controller is used as a feedback controller to regulate the error between the desired output and the system output. To demonstrate the effectiveness of the proposed controller, real-time control experiment results are presented.
Resumo:
This paper investigates the construction of linear-in-the-parameters (LITP) models for multi-output regression problems. Most existing stepwise forward algorithms choose the regressor terms one by one, each time maximizing the model error reduction ratio. The drawback is that such procedures cannot guarantee a sparse model, especially under highly noisy learning conditions. The main objective of this paper is to improve the sparsity and generalization capability of a model for multi-output regression problems, while reducing the computational complexity. This is achieved by proposing a novel multi-output two-stage locally regularized model construction (MTLRMC) method using the extreme learning machine (ELM). In this new algorithm, the nonlinear parameters in each term, such as the width of the Gaussian function and the power of a polynomial term, are firstly determined by the ELM. An initial multi-output LITP model is then generated according to the termination criteria in the first stage. The significance of each selected regressor is checked and the insignificant ones are replaced at the second stage. The proposed method can produce an optimized compact model by using the regularized parameters. Further, to reduce the computational complexity, a proper regression context is used to allow fast implementation of the proposed method. Simulation results confirm the effectiveness of the proposed technique. © 2013 Elsevier B.V.
Resumo:
Rice is the most extensively cultivated crop in the world, particularly concentrated in Asia and the Far East. Asian countries together make up for as much as 91.80 per cent of the world production of rice in 1986. The main objective of the present study is to analyse the rice economy of Kerala over time and space at the State, district and taluk level. The thesis analyses the trends in area, yield and total production of rice during the three seasons in the state, districts and taluks and studies the trends in input and output prices of rice and coconut in the state, districts and taluks. The researcher estimates the impact of input and output prices on area, yield and total output of rice in the state, districts and selected taluks and examines the conversion of paddy field into coconut garden and rubber plantation.
Resumo:
Methods are developed for predicting vibration response characteristics of systems which change configuration during operation. A cartesian robot, an example of such a position-dependent system, served as a test case for these methods and was studied in detail. The chosen system model was formulated using the technique of Component Mode Synthesis (CMS). The model assumes that he system is slowly varying, and connects the carriages to each other and to the robot structure at the slowly varying connection points. The modal data required for each component is obtained experimentally in order to get a realistic model. The analysis results in prediction of vibrations that are produced by the inertia forces as well as gravity and friction forces which arise when the robot carriages move with some prescribed motion. Computer simulations and experimental determinations are conducted in order to calculate the vibrations at the robot end-effector. Comparisons are shown to validate the model in two ways: for fixed configuration the mode shapes and natural frequencies are examined, and then for changing configuration the residual vibration at the end of the mode is evaluated. A preliminary study was done on a geometrically nonlinear system which also has position-dependency. The system consisted of a flexible four-bar linkage with elastic input and output shafts. The behavior of the rocker-beam is analyzed for different boundary conditions to show how some limiting cases are obtained. A dimensional analysis leads to an evaluation of the consequences of dynamic similarity on the resulting vibration.
Resumo:
This project is a Web Geographic Information System built on an Open Source geographic structure like MapServer (Minnesota University) and PostgreSQL/PostGIS (object relational database management system). The study case is a web site for expeditions in a specific Brazilian region
Resumo:
This research studies from an internal view based on the Competency-Based Perspective (CBP), key organizational competencies developed for small new business. CBP is chosen in an attempt to explain the differences characterizing the closed companies from the consolidated ones. The main contribution of this paper is the definition of a set of key organizational competencies for new ventures from services and low technology based sectors. Using the classification proposed by [1] and a review of the entrepreneurship literature, the main competencies were defined and classified as: managerial, input-based, transformation-based, and output-based competencies. The proposed model for evaluating new ventures organizational competence is tested by means of Structural Equation
Resumo:
In this paper we estimate a Translog output distance function for a balanced panel of state level data for the Australian dairy processing sector. We estimate a fixed effects specification employing Bayesian methods, with and without the imposition of monotonicity and curvature restrictions. Our results indicate that Tasmania and Victoria are the most technically efficient states with New South Wales being the least efficient. The imposition of theoretical restrictions marginally affects the results especially with respect to estimates of technical change and industry deregulation. Importantly, our bias estimates show changes in both input use and output mix that result from deregulation. Specifically, we find that deregulation has positively biased the production of butter, cheese and powders.
Resumo:
To improve the welfare of the rural poor and keep them in the countryside, the government of Botswana has been spending 40% of the value of agricultural GDP on agricultural support services. But can investment make smallholder agriculture prosperous in such adverse conditions? This paper derives an answer by applying a two-output six-input stochastic translog distance function, with inefficiency effects and biased technical change to panel data for the 18 districts and the commercial agricultural sector, from 1979 to 1996 This model demonstrates that herds are the most important input, followed by draft power. land and seeds. Multilateral indices for technical change, technical efficiency and total factor productivity (TFP) show that the technology level of the commercial agricultural sector is more than six times that of traditional agriculture and that the gap has been increasing, due to technological regression in traditional agriculture and modest progress in commercial agriculture. Since the levels of efficiency are similar, the same patient is repeated by the TFP indices. This result highlights the policy dilemma of the trade-off between efficiency and equity objectives.
Resumo:
Motivation: There is a frequent need to apply a large range of local or remote prediction and annotation tools to one or more sequences. We have created a tool able to dispatch one or more sequences to assorted services by defining a consistent XML format for data and annotations. Results: By analyzing annotation tools, we have determined that annotations can be described using one or more of the six forms of data: numeric or textual annotation of residues, domains (residue ranges) or whole sequences. With this in mind, XML DTDs have been designed to store the input and output of any server. Plug-in wrappers to a number of services have been written which are called from a master script. The resulting APATML is then formatted for display in HTML. Alternatively further tools may be written to perform post-analysis.
Resumo:
In immediate recall tasks, visual recency is substantially enhanced when output interference is low (Cowan, Saults, Elliott, & Moreno, 2002; Craik, 1969) whereas auditory recency remains high even under conditions of high output interference. Ibis auditory advantage has been interpreted in terms of auditory resistance to output interference (e.g., Neath & Surprenant, 2003). In this study the auditory-visual difference at low output interference re-emerged when ceiling effects were accounted for, but only with spoken output. With written responding the auditory advantage remained significantly larger with high than with low output interference. These new data suggest that both superior auditory encoding and modality-specific output interference contribute to the classic auditory-visual modality effect.
Resumo:
A modified radial basis function (RBF) neural network and its identification algorithm based on observational data with heterogeneous noise are introduced. The transformed system output of Box-Cox is represented by the RBF neural network. To identify the model from observational data, the singular value decomposition of the full regression matrix consisting of basis functions formed by system input data is initially carried out and a new fast identification method is then developed using Gauss-Newton algorithm to derive the required Box-Cox transformation, based on a maximum likelihood estimator (MLE) for a model base spanned by the largest eigenvectors. Finally, the Box-Cox transformation-based RBF neural network, with good generalisation and sparsity, is identified based on the derived optimal Box-Cox transformation and an orthogonal forward regression algorithm using a pseudo-PRESS statistic to select a sparse RBF model with good generalisation. The proposed algorithm and its efficacy are demonstrated with numerical examples.