942 resultados para Inibidores de Hidroximetilglutaril-CoA
Resumo:
A published formula containing minimal aortic cross-sectional area and the flow deceleration pattern in the descending aorta obtained by cardiovascular magnetic resonance predicts significant coarctation of the aorta (CoA). However, the existing formula is complicated to use in clinical practice and has not been externally validated. Consequently, its clinical utility has been limited. The aim of this study was to derive a simple and clinically practical algorithm to predict severe CoA from data obtained by cardiovascular magnetic resonance. Seventy-nine consecutive patients who underwent cardiovascular magnetic resonance and cardiac catheterization for the evaluation of native or recurrent CoA at Children's Hospital Boston (n = 30) and the University of California, San Francisco (n = 49), were retrospectively reviewed. The published formula derived from data obtained at Children's Hospital Boston was first validated from data obtained at the University of California, San Francisco. Next, pooled data from the 2 institutions were analyzed, and a refined model was created using logistic regression methods. Finally, recursive partitioning was used to develop a clinically practical prediction tree to predict transcatheter systolic pressure gradient ≥ 20 mm Hg. Severe CoA was present in 48 patients (61%). Indexed minimal aortic cross-sectional area and heart rate-corrected flow deceleration time in the descending aorta were independent predictors of CoA gradient ≥ 20 mm Hg (p <0.01 for both). A prediction tree combining these variables reached a sensitivity and specificity of 90% and 76%, respectively. In conclusion, the presented prediction tree on the basis of cutoff values is easy to use and may help guide the management of patients investigated for CoA.
Resumo:
The effectiveness of lipid-lowering medication critically depends on the patients' compliance and the efficacy of the prescribed drug. The primary objective of this multicentre study was to compare the efficacy of rosuvastatin with or without access to compliance initiatives, in bringing patients to the Joint European Task Force's (1998) recommended low-density lipoprotein cholesterol (LDL-C) level goal (LDL-C, <3.0 mmol/L) at week 24. Secondary objectives were comparison of the number and percentage of patients achieving European goals (1998, 2003) for LDL-C and other lipid parameters. Patients with primary hypercholesterolaemia and a 10-year coronary heart disease risk of >20% received open label rosuvastatin treatment for 24 weeks with or without access to compliance enhancement tools. The initial daily dosage of 10 mg could be doubled at week 12. Compliance tools included: a) a starter pack for subjects containing a videotape, an educational leaflet, a passport/goal diary and details of the helpline and/or website; b) regular personalised letters to provide message reinforcement; c) a toll-free helpline and a website. The majority of patients (67%) achieved the 1998 European goal for LDL-C at week 24. 31% required an increase in dosage of rosuvastatin to 20 mg at week 12. Compliance enhancement tools did not increase the number of patients achieving either the 1998 or the 2003 European target for plasma lipids. Rosuvastatin was well tolerated during this study. The safety profile was comparable with other drugs of the same class. 63 patients in the 10 mg group and 58 in the 10 mg Plus group discontinued treatment. The main reasons for discontinuation were adverse events (39 patients in the 10 mg group; 35 patients in the 10 mg Plus group) and loss to follow-up (13 patients in the 10 mg group; 9 patients in the 10 mg Plus group). The two most frequently reported adverse events were myalgia (34 patients, 3% respectively) and back pain (23 patients, 2% respectively). The overall rate of temporary or permanent study discontinuation due to adverse events was 9% (n = 101) in patients receiving 10 mg rosuvastatin and 3% (n = 9) in patients titrated up to 20 mg rosuvastatin. Rosuvastatin was effective in lowering LDL-C values in patients with hypercholesterolaemia to the 1998 European target at week 24. However, compliance enhancement tools did not increase the number of patients achieving any European targets for plasma lipids.
Resumo:
OBJECTIVE-Chronic exercise and obesity both increase intra-myocellular triglycerides (IMTGs) despite having opposing effects on insulin sensitivity. We hypothesized that chronically exercise-trained muscle would be characterized by lower skeletal muscle diacylglycerols (DAGs) and ceramides despite higher IMTGs and would account for its higher insulin sensitivity. We also hypothesized that the expression of key skeletal muscle proteins involved in lipid droplet hydrolysis, DAG formation, and fatty-acid partitioning and oxidation would be associated with the lipotoxic phenotype.RESEARCH DESIGN AND METHODS-A total of 14 normal-weight, endurance-trained athletes (NWA group) and 7 normal-weight sedentary (NWS group) and 21 obese sedentary (OBS group) volunteers were studied. Insulin sensitivity was assessed by glucose clamps. IMTGs, DAGs, ceramides, and protein expression were measured in muscle biopsies.RESULTS-DAG content in the NWA group was approximately twofold higher than in the OBS group and similar to 50% higher than in the NWS group, corresponding to higher insulin sensitivity. While certain DAG moieties clearly were associated with better insulin sensitivity, other species were not. Ceramide content was higher in insulin-resistant obese muscle. The expression of OXPAT/perilipin-5, adipose triglyceride lipase, and stearoyl-CoA desaturase protein was higher in the NWA group, corresponding to a higher mitochondrial content, proportion of type 1 myocytes, DAGs, and insulin sensitivity.CONCLUSIONS-Total myocellular DAGs were markedly higher in highly trained athletes, corresponding with higher insulin sensitivity, and suggest a more complex role for DAGs in insulin action. Our data also provide additional evidence in humans linking ceramides to insulin resistance. Finally, this study provides novel evidence supporting a role for specific skeletal muscle proteins involved in intramyocellular lipids, mitochondrial oxidative capacity, and insulin resistance. Diabetes 60:2588-2597, 2011
Resumo:
In this study we investigated the variations of the maximal activities of the rate-controlling glycolytic enzymes (i.e., hexokinase, HK; phosphofructokinase, PFK; pyruvate kinase, PK) and of the pyruvate-dehydrogenase complex (PDHc) during the early embryogenesis of Xenopus laevis (from cleavage through hatching). All the enzymatic assays, using different coupled reactions, were performed spectrophotometrically on cytosolic and mitochondrial fractions. The maximal HK activity increases markedly from neurulation onwards, PFK activity presents a peak around gastrulation, PK activity remains relatively constant throughout the period studied and the highest PDHc activity is observed during cleavage. The specific activities display the same temporal pattern. Furthermore, in the sequence of reactions by which glucose is degraded to form acetyl-CoA, the maximal activities of PFK and PK are not limiting while those of HK and PDHc could be rate-limiting at relatively late developmental stages (hatching).
Resumo:
Carnitine palmitoyltransferase-1 (CPT-1) liver isoform or CPT-1a is implicated in CNS control of food intake. However, the exact brain nucleus site(s) in mediating this action of CPT-1a has not been identified. In this report, we assess the role of CPT-1a in hypothalamic ventromedial nucleus (VMN). We stereotaxically injected an adenoviral vector containing CPT-1a coding sequence into the VMN of rats to induce overexpression and activation of CPT-1a. The VMN-selective activation of CPT-1a induced orexigenic effect, suggesting CPT-1a in the VMN is involved in the central control of feeding. Intracerebroventricular administration of etomoxir, a CPT-1 inhibitor, decreases food intake. Importantly, in the animals with VMN-overexpression of a CPT-1a mutant that antagonizes the CPT-1 inhibition by etomoxir, the anorectic response to etomoxir was attenuated. This suggests that VMN is involved in mediating the anorectic effect of central inhibition of CPT-1a. In contrast, Arc overexpression of the mutant did not alter etomoxir-induced inhibition of food intake, suggesting that Arc CPT-1a does not play significant roles in this anorectic action. Furthermore, in the VMN, CPT-1a appears to act downstream of hypothalamic malonyl-CoA action of feeding. Finally, we show that in the VMN, CPT-1 activity altered in concert with fasting and refeeding states, supporting a physiological role of CPT-1a in mediating the control of feeding. Taking together, CPT-1a in the hypothalamic VMN appears to play an important role in the central control of food intake. VMN-selective modulation of CPT-1a activity may therefore be a promising strategy in controlling food intake and maintaining normal body weight.
Resumo:
Expression by Saccharomyces cerevisiae of a polyhydroxyalkanoate (PHA) synthase modified at the carboxy end by the addition of a peroxisome targeting signal derived from the last 34 amino acids of the Brassica napus isocitrate lyase (ICL) and containing the terminal tripeptide Ser-Arg-Met resulted in the synthesis of PHA. The ability of the terminal peptide Ser-Arg-Met and of the 34-amino-acid peptide from the B. napus ICL to target foreign proteins to the peroxisome of S. cerevisiae was demonstrated with green fluorescent protein fusions. PHA synthesis was found to be dependent on the presence of both the enzymes generating the beta-oxidation intermediate 3-hydroxyacyl-coenzyme A (3-hydroxyacyl-[CoA]) and the peroxin-encoding PEX5 gene, demonstrating the requirement for a functional peroxisome and a beta-oxidation cycle for PHA synthesis. Using a variant of the S. cerevisiae beta-oxidation multifunctional enzyme with a mutation inactivating the B domain of the R-3-hydroxyacyl-CoA dehydrogenase, it was possible to modify the PHA monomer composition through an increase in the proportion of the short-chain monomers of five and six carbons.
Resumo:
Jasmonates are ubiquitous oxylipin-derived phytohormones that are essential in the regulation of many development, growth and defence processes. Across the plant kingdom, jasmonates act as elicitors of the production of bioactive secondarymetabolites that serve in defence against attackers. Knowledge of the conserved jasmonate perception and early signalling machineries is increasing, but the downstream mechanisms that regulate defence metabolism remain largely unknown. Herewe showthat, in the legumeMedicago truncatula, jasmonate recruits the endoplasmic-reticulum-associated degradation (ERAD)quality control system tomanagethe production of triterpene saponins, widespread bioactive compounds that share a biogenic origin with sterols. An ERAD-type RING membraneanchor E3 ubiquitin ligase is co-expressed with saponin synthesis enzymes to control the activity of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), the rate-limiting enzyme in the supply of the ubiquitous terpene precursor isopentenyl diphosphate. Thus, unrestrained bioactive saponin accumulationis prevented and plant development and integrity secured. This control apparatus is equivalent to the ERAD system that regulates sterol synthesis in yeasts and mammals but that uses distinct E3 ubiquitin ligases, of the HMGR degradation 1 (HRD1) type, to direct destruction of HMGR. Hence, the general principles for the management of sterol and triterpene saponin biosynthesis are conserved across eukaryotes but can be controlled by divergent regulatory cues.
Resumo:
Jasmonates are ubiquitous oxylipin-derived phytohormones that are essential in the regulation of many development, growth and defence processes. Across the plant kingdom, jasmonates act as elicitors of the production of bioactive secondarymetabolites that serve in defence against attackers. Knowledge of the conserved jasmonate perception and early signalling machineries is increasing, but the downstream mechanisms that regulate defence metabolism remain largely unknown. Herewe showthat, in the legumeMedicago truncatula, jasmonate recruits the endoplasmic-reticulum-associated degradation (ERAD)quality control system tomanagethe production of triterpene saponins, widespread bioactive compounds that share a biogenic origin with sterols. An ERAD-type RING membraneanchor E3 ubiquitin ligase is co-expressed with saponin synthesis enzymes to control the activity of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), the rate-limiting enzyme in the supply of the ubiquitous terpene precursor isopentenyl diphosphate. Thus, unrestrained bioactive saponin accumulationis prevented and plant development and integrity secured. This control apparatus is equivalent to the ERAD system that regulates sterol synthesis in yeasts and mammals but that uses distinct E3 ubiquitin ligases, of the HMGR degradation 1 (HRD1) type, to direct destruction of HMGR. Hence, the general principles for the management of sterol and triterpene saponin biosynthesis are conserved across eukaryotes but can be controlled by divergent regulatory cues.
Resumo:
Jasmonates are ubiquitous oxylipin-derived phytohormones that are essential in the regulation of many development, growth and defence processes. Across the plant kingdom, jasmonates act as elicitors of the production of bioactive secondarymetabolites that serve in defence against attackers. Knowledge of the conserved jasmonate perception and early signalling machineries is increasing, but the downstream mechanisms that regulate defence metabolism remain largely unknown. Herewe showthat, in the legumeMedicago truncatula, jasmonate recruits the endoplasmic-reticulum-associated degradation (ERAD)quality control system tomanagethe production of triterpene saponins, widespread bioactive compounds that share a biogenic origin with sterols. An ERAD-type RING membraneanchor E3 ubiquitin ligase is co-expressed with saponin synthesis enzymes to control the activity of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), the rate-limiting enzyme in the supply of the ubiquitous terpene precursor isopentenyl diphosphate. Thus, unrestrained bioactive saponin accumulationis prevented and plant development and integrity secured. This control apparatus is equivalent to the ERAD system that regulates sterol synthesis in yeasts and mammals but that uses distinct E3 ubiquitin ligases, of the HMGR degradation 1 (HRD1) type, to direct destruction of HMGR. Hence, the general principles for the management of sterol and triterpene saponin biosynthesis are conserved across eukaryotes but can be controlled by divergent regulatory cues.
Resumo:
Résumé de: Glynn RJ et al. Rosuvastatin for primary prevention in older persons with elevated C-reactive protein and low to average low-density lipoprotein cholesterol levels: exploratory analysis of a randomized trial. Ann Intern Med. 2010 Apr 20;152(8):488-96, PMID: 20404379.
Resumo:
The first step in the synthesis of the bicyclic rings of D-biotin is mediated by 8-amino-7-oxononanoate (AON) synthase, which catalyzes the decarboxylative condensation of l-alanine and pimelate thioester. We found that the Aspergillus nidulans AON synthase, encoded by the bioF gene, is a peroxisomal enzyme with a type 1 peroxisomal targeting sequence (PTS1). Localization of AON to the peroxisome was essential for biotin synthesis because expression of a cytosolic AON variant or deletion of pexE, encoding the PTS1 receptor, rendered A. nidulans a biotin auxotroph. AON synthases with PTS1 are found throughout the fungal kingdom, in ascomycetes, basidiomycetes, and members of basal fungal lineages but not in representatives of the Saccharomyces species complex, including Saccharomyces cerevisiae. A. nidulans mutants defective in the peroxisomal acyl-CoA oxidase AoxA or the multifunctional protein FoxA showed a strong decrease in colonial growth rate in biotin-deficient medium, whereas partial growth recovery occurred with pimelic acid supplementation. These results indicate that pimeloyl-CoA is the in vivo substrate of AON synthase and that it is generated in the peroxisome via the β-oxidation cycle in A. nidulans and probably in a broad range of fungi. However, the β-oxidation cycle is not essential for biotin synthesis in S. cerevisiae or Escherichia coli. These results suggest that alternative pathways for synthesis of the pimelate intermediate exist in bacteria and eukaryotes and that Saccharomyces species use a pathway different from that used by the majority of fungi.
Resumo:
O antagonismo de Pseudomonas putida biovar A (C1-1B), P. putida biovar B (Santa Bárbara), P. fluorescens (C2-8C e RA2), Bacillus subtilis (OG e RC2) e Flavobacterium sp. (CIS/NA) contra Phytophthora parasitica e P. citrophthora , agentes da podridão radicular dos citros, foi avaliado através da inibição do crescimento micelial (cultura pareada) e redução na percentagem de infecção da doença em mudas de citros (tratamento de sementes com rizobactérias). Na seleção preliminar, 33 isolados bacterianos foram testados. Sementes de citros pré-germinadas foram tratadas por imersão nas suspensões das bactérias (10(9) ufc/ml), e plantadas em tubetes contendo solo natural infestado com o fitopatógeno (50 ml de suspensão/ kg de solo). A avaliação da percentagem de infecção foi efetuada após 15 dias. In vitro, os isolados bacterianos RC2, OG, CIS/NA e C1-1B foram os mais ativos inibidores do crescimento micelial de Phytophthora. Em condições de casa de vegetação, todos os isolados proporcionaram redução na percentagem de infecção da doença em todos os ensaios realizados. Promoção de crescimento de plantas foi verificada pela inoculação de plântulas com as linhagens OG, RC2, CiS/Na e C1-1B.
Resumo:
BACKGROUND: Propionic acidemia is an inherited disorder caused by deficiency of propionyl-CoA carboxylase. Although it is one of the most frequent organic acidurias, information on the outcome of affected individuals is still limited. STUDY DESIGN/METHODS: Clinical and outcome data of 55 patients with propionic acidemia from 16 European metabolic centers were evaluated retrospectively. 35 patients were diagnosed by selective metabolic screening while 20 patients were identified by newborn screening. Endocrine parameters and bone age were evaluated. In addition, IQ testing was performed and the patients' and their families' quality of life was assessed. RESULTS: The vast majority of patients (>85%) presented with metabolic decompensation in the neonatal period. Asymptomatic individuals were the exception. About three quarters of the study population was mentally retarded, median IQ was 55. Apart from neurologic symptoms, complications comprised hematologic abnormalities, cardiac diseases, feeding problems and impaired growth. Most patients considered their quality of life high. However, according to the parents' point of view psychic problems were four times more common in propionic acidemia patients than in healthy controls. CONCLUSION: Our data show that the outcome of propionic acidemia is still unfavourable, in spite of improved clinical management. Many patients develop long-term complications affecting different organ systems. Impairment of neurocognitive development is of special concern. Nevertheless, self-assessment of quality of life of the patients and their parents yielded rather positive results.
Resumo:
Foram conduzidos dois experimentos com o objetivo de avaliar a eficiência de tratamentos com 1-MCP sobre a conservação da manga 'Tommy Atkins', reconhecendo doses e número de aplicações. Os frutos foram colhidos no estádio de maturação 2, em pomar comercial localizado em Petrolina, Pernambuco. No primeiro experimento, foram testados: 1. doses (0; 600; 1.200 e 2.400 nL L-1), aplicadas a 25ºC; e 2. tempo de armazenamento (0; 2; 4; 7; 9; 10 e 11 dias), em temperatura ambiente (26,7±2,0ºC). O delineamento experimental foi o inteiramente casualizado, em fatorial 4 x 7 (doses de 1-MCP x tempo de armazenamento), com 4 repetições. No segundo experimento, foram estudados: 1. doses e número de aplicações (controle, uma aplicação de 900 nL L-1, uma aplicação de 1.200 nL L-1 e duas aplicações de 900 nL L-1); e 2. tempo de armazenamento (0; 7; 15; 18; 20; 22; 25 e 26 dias), sendo os frutos mantidos refrigerados (11,0±1,6ºC e 88±7% UR) até o 15º dia e, então, transferidos para temperatura ambiente (26,3±2,1ºC e 44±6% UR). Neste experimento, o delineamento foi inteiramente casualizado, em fatorial 4 x 8 (dose e número de aplicações de 1-MCP x tempo de armazenamento), com 4 repetições. A primeira ou única aplicação ocorreu no dia da colheita e a segunda, no 14º dia. O 1-MCP afetou essencialmente a firmeza da polpa, sendo 1.200 nL L-1 a dose mais eficiente no retardo do amaciamento. A realização de uma aplicação de 1.200 nL L-1 ou duas de 900 nL L-1, sob refrigeração, resultou em efeitos praticamente equivalentes. Porém, as alterações logísticas promovidas por uma única aplicação são menores.
Resumo:
Avaliou-se a influência da época de aplicação pós-colheita do 1-metilciclopropeno (1-MCP) e do frigoarmazenamento sobre a vida útil de mangas 'Tommy Atkins', colhidas em estádio de maturação 2 (casca de cor verde-clara no ápice do fruto e polpa levemente amarela próximo à semente). Para estudo da época de aplicação, foram comparados: controle, aplicação apenas no início do armazenamento refrigerado e aplicação apenas no final da refrigeração. Os frutos foram expostos a 1.500 nL.L-1 de 1-MCP durante 12 horas. As avaliações foram realizadas aos 0; 7; 15; 18; 20; 21 e 22 dias, sendo que até o décimo quinto dia os frutos estiveram sob refrigeração (10,6ºC ± 3,6 e 84% UR ± 7) e, em seguida, foram transferidos para temperatura ambiente (24,4ºC ± 2,9 e 42% UR ± 11). O delineamento experimental foi inteiramente casualizado, em fatorial 3x7 (época de aplicação de 1-MCP x tempo de armazenamento), com quatro repetições. O aumento do croma e a redução no ângulo de cor da casca foram mais graduais nos frutos tratados com 1-MCP no final da refrigeração. A aplicação no início da refrigeração atrasou temporariamente o decréscimo na acidez titulável. O amaciamento da polpa ocorreu mais lentamente, até o sexto dia após a saída da câmara fria, nos frutos que receberam 1-MCP, independentemente da época de aplicação. Contudo, aos 22 dias, essas diferenças não eram mais reconhecidas. Registrando-se equivalência entre as duas épocas de aplicação, a opção pelo tratamento no início da refrigeração resulta em menor interferência nas operações pós-colheita atualmente praticadas.