969 resultados para Inhibit fungal
Resumo:
The inefficiency of chemical pesticides to control phytopathogenic fungi in agriculture and the frequent incidence of human diseases caused by bacteria which are resistant to antibiotics lead to the search for alternative antimicrobial compounds. In this context, plant defensins are a promising tool for the control of both plant and human pathogenic agents. Plant defensins are cationic peptides of about 50 amino acid residues, rich in cysteine and whose tridimensional structure is considerably conserved among different plant species. These antimicrobial molecules represent an important innate component from plant defense response against pathogens and are expressed in various plant tissues, such as leaves, tubers, flowers, pods and seeds. The present work aimed at the evaluation of the antimicrobial activity of two plant defensins against different phytopathogenic fungi and pathogenic bacteria to humans. The defensin Drr230a, whose gene was isolated from pea (Pisum sativum), and the defensin CD1,whose gene was identified within coffee (Coffea arabica) transcriptome, were subcloned in yeast expression vector and expressed in Pichia pastoris. The gene cd1 was subcloned as two different recombinant forms: CD1tC, containing a six-histidine sequence (6xHis) at the peptide C-terminal region and CD1tN, containing 6xHis coding sequence at the N-terminal region. In the case of the defensin Drr230a, the 6xHis coding sequence was inserted only at the N-terminal region. Assays of the antimicrobial activity of the purified recombinant proteins rDrr230a and rCD1 against Phakopsora pachyrhizi, causal agent of soybean Asian rust, were performed to analyze the in vitro spore germination inhibition and disease severity caused by the fungus in planta. Both recombinant defensins were able to inhibit P. pachyrhizi uredospore germination, with no difference between the antimicrobial action of either CD1tC or CD1tN. Moreover, rDrr230a and rCD1 drastically reduced severity of soybean Asian rust, as demonstrated by in planta assays. In spite of the fact that rCD1 was not able to inhibit proliferation of the human pathogenic bacteria Staplylococcus aureus and Klebsiella pneumoniae, rCD1 was able to inhibit growth of the phytopathogenic fungus Fusarium tucumaniae, that causes soybean sudden death syndrome. The obtained results show that these plant defensins are useful candidates to be used in plant genetic engineering programs to control agriculture impacting fungal diseases.
Resumo:
Fungal ribotoxins that block protein synthesis can be useful warheads in the context of a targeted immunotoxin. α-Sarcin is a small (17 kDa) fungal ribonuclease produced by Aspergillus giganteus that functions by catalytically cleaving a single phosphodiester bond in the sarcin–ricin loop of the large ribosomal subunit, thus making the ribosome unrecognisable to elongation factors and leading to inhibition of protein synthesis. Peptide mapping using an ex vivo human T cell assay determined that α-sarcin contained two T cell epitopes; one in the N-terminal 20 amino acids and the other in the C-terminal 20 amino acids. Various mutations were tested individually within each epitope and then in combination to isolate deimmunised α-sarcin variants that had the desired properties of silencing T cell epitopes and retention of the ability to inhibit protein synthesis (equivalent to wild-type, WT α-sarcin). A deimmunised variant (D9T/Q142T) demonstrated a complete lack of T cell activation in in vitro whole protein human T cell assays using peripheral blood mononuclear cells from donors with diverse HLA allotypes. Generation of an immunotoxin by fusion of the D9T/Q142T variant to a single-chain Fv targeting Her2 demonstrated potent cell killing equivalent to a fusion protein comprising the WT α-sarcin. These results represent the first fungal ribotoxin to be deimmunised with the potential to construct a new generation of deimmunised immunotoxin therapeutics.
Resumo:
Peer reviewed
Resumo:
Economic losses resulting from disease development can be reduced by accurate and early detection of plant pathogens. Early detection can provide the grower with useful information on optimal crop rotation patterns, varietal selections, appropriate control measures, harvest date and post harvest handling. Classical methods for the isolation of pathogens are commonly used only after disease symptoms. This frequently results in a delay in application of control measures at potentially important periods in crop production. This paper describes the application of both antibody and DNA based systems to monitor infection risk of air and soil borne fungal pathogens and the use of this information with mathematical models describing risk of disease associated with environmental parameters.
Resumo:
Development of recombinant DNA technology allowed scientists to manipulate plant genomes, making it possible to study genes and exploit them to modify novel agronomic traits. Here, we review the current and future potential of genetic modification (GM) strategies used to increase the resistance of plants to oomycete and fungal pathogens. Numerous resistance genes (R-genes) have been cloned, and under laboratory conditions, transgenic plants have given promising results against some important plant pathogens. However, only a few have so far been deployed as commercial crop plants.GMof plants to disrupt pathogenicity, such as by inhibiting or degrading pathogenicity factors, especially by necrotrophic pathogens, has also been exploited. The potential to engineer plants for the production of antimicrobial peptides or to modify defense-signaling pathways have been successfully demonstrated under laboratory conditions. The most promising current technology is genome editing, which allows researchers to edit DNA sequences directly in their endogenous environment. The potential of this approach is discussed in detail and examples where broad-spectrum resistance has been achieved are given.
Resumo:
Fungal and oomycete pathogens are the causal agents of many important plant diseases. They affect crops that are staple foods for humans and livestock and are responsible for significant economic losses every year. This in turn generates a global social impact. Although fungi and oomycetes evolved separately, they share similar strategies and weaponry to attack plants. Here we review the challenges to global food security posed by these pathogens, current technologies used for detection and diagnostics, the latest understanding of pathogens' strategies to colonize plants, and current and future control measures. Genomic sequences of several important fungal and oomycete pathogens, as well as many crop plants, are now available and are helping to increase understanding of host–pathogen interactions. Recent developments in this field are discussed.
Resumo:
Sandpits used by children are frequently visited by wild life which constitutes a source of fungal pathogens and allergenic fungi. This study aimed to take an unannounced snapshot of the urban levels of fungal contaminants in sands, using for this purpose two public recreational parks, three elementary schools and two kindergartens. All samples were from Lisbon and neighboring municipalities and were tested for fungi of clinical interest. Potentially pathogenic fungi were isolated from all samples besides one. Fusarium dimerum (32.4%) was found to be the dominant species in one park and Chrysonilia spp. in the other (46.6%). Fourteen different species and genera were detected and no dermatophytes were found. Of a total of 14 species and genera, the fungi most isolated from the samples of the elementary schools were Penicillium spp. (74%), Cladophialophora spp. (38%) and Cladosporium spp. (90%). Five dominant species and genera were isolated from the kindergartens. Penicillium spp. was the only genus isolated in one, though with remarkably high counts (32500 colony forming units per gram). In the other kindergarten Penicillium spp. were also the most abundant species, occupying 69% of all the fungi found. All of the samples exceeded the Maximum Recommended Value (MRV) for beach sand defined by Brandão et al. 2011, which are currently the only quantitative guidelines available for the same matrix. The fungi found confirm the potential risk of exposure of children to keratinophilic fungi and demonstrates that regular cleaning or replacing of sand needs to be implemented in order to minimize contamination.
Resumo:
Objectives: Mycological contamination of occupational environments can be a result of fungal spores’ dispersion in the air and on surfaces. Therefore, it is very important to assess it in both types of the samples. In the present study we assessed fungal contamination in the air and in the surface samples to show relevance of surfaces sampling in complementing the results obtained in the air samples. Material and Methods: In total, 42 settings were assessed by the analysis of air and surfaces samples. The settings were divided into settings with a high fungal load (7 poultry farms and 7 pig farms, 3 cork industries, 3 waste management plants, 2 wastewater treatment plants and 1 horse stable) and a low fungal load (10 hospital canteens, 8 college canteens and 1 maternity hospital). In addition to culture-based methods, molecular tools were also applied to detect fungal burden in the settings with a higher fungal load. Results: From the 218 sampling sites, 140 (64.2%) presented different species in the examined surfaces when compared with the species identified in the air. A positive association in the high fungal load settings was found between the presence of different species in the air and surfaces. Wastewater treatment plants constituted the setting with the highest number of different species between the air and surface. Conclusions: We observed that surfaces sampling and application of molecular tools showed the same efficacy of species detection in high fungal load settings, corroborating the fact that surface sampling is crucial for a correct and complete analysis of occupational scenarios.
Resumo:
Introduction - Within the Aspergillus genus, Aspergillus fumigatus species is one of the most ubiquitous saprophytic fungi and is considered the species with higher clinical relevance. The fungi belonging to the Fumigati section are the most common cause of invasive aspergillosis and a major source of infection related mortality in immunocompromised patients. One of the most abundant metabolites produced by Aspergillus fumigatus is the metabolite gliotoxin, which exhibits a diverse array of biologic effects on the immune system. Further, environments contaminated with A. fumigatus may be the cause or enhance respiratory problems in the workers of those specific settings. These species produce specific allergens and mycotoxins that could cause respiratory disorders. Aim of the study - The aim of the present work was to determine the prevalence of Aspergillus section Fumigati by cultural and molecular methods in poultry; swine and bovine; and large animal (bovine and horses) slaughterhouses.
Resumo:
Introduction - Fungi are natural coffee contaminants and under certain environmental conditions have the potential to produce toxins. Many studies revealed that the important toxigenic fungal genera (Aspergillus and Penicillium) are natural coffee contaminants, and are present from the field to storage. Aspergilli from the Circumdati and Nigri sections are known to produce high levels of ochratoxin A, a mycotoxin known as nephrotoxic for animals and humans. This work aimed to evaluate fungal distribution and also the prevalence of Aspergillus sections Fumigati, Flavi, Nigri and Circumdati from Coffea arabica (Arabica coffee) and Coffea canephora (Robusta coffee) green samples.