973 resultados para Immunologic Databases
Resumo:
In this paper, we present an integrated system for real-time automatic detection of human actions from video. The proposed approach uses the boundary of humans as the main feature for recognizing actions. Background subtraction is performed using Gaussian mixture model. Then, features are extracted from silhouettes and Vector Quantization is used to map features into symbols (bag of words approach). Finally, actions are detected using the Hidden Markov Model. The proposed system was validated using a newly collected real- world dataset. The obtained results show that the system is capable of achieving robust human detection, in both indoor and outdoor environments. Moreover, promising classification results were achieved when detecting two basic human actions: walking and sitting.
Resumo:
Dissertação de mestrado em Bioinformática
Resumo:
Nowadays, the vulgarization of information and communication technologies has reached to a level that the majority of people spend a lot of time using software to do regular tasks, ranging from games and ordinary time and weather utilities to some more sophisticated ones, like retail or banking applications. This new way of life is supported by the Internet or by specific applications that changed the image people had about using information and communication technologies. All over the world, the first cycle of studies of educational systems also has been addressed with the justification that this encourages the development of children. Taking this into consideration, we design and develop a visual explorer system for relational databases that can be used by everyone, from “7 to 77”, in an intuitive and easy way, getting immediate results – a new database querying experience. Thus, in this paper we will expose the main characteristics and features of this visual database explorer, showing how it works and how it can be used to execute the most current data manipulation operations over a database.
Resumo:
Tese de Doutoramento Ramo Engenharia Industrial e de Sistemas
Resumo:
The use of chemical analysis of microbial components, including proteins, became an important achievement in the 80’s of the last century to the microbial identification. This led a more objective microbial identification scheme, called chemotaxonomy, and the analytical tools used in the field are mainly 1D/2D gel electrophoresis, spectrophotometry, high-performance liquid chromatography, gas chromatography, and combined gas chromatography-mass spectrometry. The Edman degradation reaction was also applied to peptides sequence giving important insights to the microbial identification. The rapid development of these techniques, in association with knowledge generated by DNA sequencing and phylogeny based on rRNA gene and housekeeping genes sequences, boosted the microbial identification to an unparalleled scale. The recent results of mass spectrometry (MS), like Matrix-Assisted Laser Desorption/Ionisation Time-of-Flight (MALDI-TOF), for rapid and reliable microbial identification showed considerable promise. In addition, the technique is rapid, reliable and inexpensive in terms of labour and consumables when compared with other biological techniques. At present, MALDI-TOF MS adds an additional step for polyphasic identification which is essential when there is a paucity of characters or high DNA homologies for delimiting very close related species. The full impact of this approach is now being appreciated when more diverse species are studied in detail and successfully identified. However, even with the best polyphasic system, identification of some taxa remains time-consuming and determining what represents a species remains subjective. The possibilities opened with new and even more robust mass spectrometers combined with sound and reliable databases allow not only the microbial identification based on the proteome fingerprinting but also include de novo specific proteins sequencing as additional step. These approaches are pushing the boundaries in the microbial identification field.
Resumo:
The use of chemical analysis of microbial components, including proteins, became an important achievement in the 80’s of the last century to the microbial identification. This led a more objective microbial identification scheme, called chemotaxonomy, and the analytical tools used in the field are mainly 1D/2D gel electrophoresis, spectrophotometry, high-performance liquid chromatography, gas chromatography, and combined gas chromatography-mass spectrometry. The Edman degradation reaction was also applied to peptides sequence giving important insights to the microbial identification. The rapid development of these techniques, in association with knowledge generated by DNA sequencing and phylogeny based on rRNA gene and housekeeping genes sequences, boosted the microbial identification to an unparalleled scale. The recent results of mass spectrometry (MS), like Matrix-Assisted Laser Desorption/Ionisation Time-of-Flight (MALDI-TOF), for rapid and reliable microbial identification showed considerable promise. In addition, the technique is rapid, reliable and inexpensive in terms of labour and consumables when compared with other biological techniques. At present, MALDI-TOF MS adds an additional step for polyphasic identification which is essential when there is a paucity of characters or high DNA homologies for delimiting very close related species. The full impact of this approach is now being appreciated when more diverse species are studied in detail and successfully identified. However, even with the best polyphasic system, identification of some taxa remains time-consuming and determining what represents a species remains subjective. The possibilities opened with new and even more robust mass spectrometers combined with sound and reliable databases allow not only the microbial identification based on the proteome fingerprinting but also include de novo specific proteins sequencing as additional step. These approaches are pushing the boundaries in the microbial identification field.
Resumo:
To better understand the dynamic behavior of metabolic networks in a wide variety of conditions, the field of Systems Biology has increased its interest in the use of kinetic models. The different databases, available these days, do not contain enough data regarding this topic. Given that a significant part of the relevant information for the development of such models is still wide spread in the literature, it becomes essential to develop specific and powerful text mining tools to collect these data. In this context, this work has as main objective the development of a text mining tool to extract, from scientific literature, kinetic parameters, their respective values and their relations with enzymes and metabolites. The approach proposed integrates the development of a novel plug-in over the text mining framework @Note2. In the end, the pipeline developed was validated with a case study on Kluyveromyces lactis, spanning the analysis and results of 20 full text documents.
Resumo:
DNA microarrays are one of the most used technologies for gene expression measurement. However, there are several distinct microarray platforms, from different manufacturers, each with its own measurement protocol, resulting in data that can hardly be compared or directly integrated. Data integration from multiple sources aims to improve the assertiveness of statistical tests, reducing the data dimensionality problem. The integration of heterogeneous DNA microarray platforms comprehends a set of tasks that range from the re-annotation of the features used on gene expression, to data normalization and batch effect elimination. In this work, a complete methodology for gene expression data integration and application is proposed, which comprehends a transcript-based re-annotation process and several methods for batch effect attenuation. The integrated data will be used to select the best feature set and learning algorithm for a brain tumor classification case study. The integration will consider data from heterogeneous Agilent and Affymetrix platforms, collected from public gene expression databases, such as The Cancer Genome Atlas and Gene Expression Omnibus.
Resumo:
Transcriptional Regulatory Networks (TRNs) are powerful tool for representing several interactions that occur within a cell. Recent studies have provided information to help researchers in the tasks of building and understanding these networks. One of the major sources of information to build TRNs is biomedical literature. However, due to the rapidly increasing number of scientific papers, it is quite difficult to analyse the large amount of papers that have been published about this subject. This fact has heightened the importance of Biomedical Text Mining approaches in this task. Also, owing to the lack of adequate standards, as the number of databases increases, several inconsistencies concerning gene and protein names and identifiers are common. In this work, we developed an integrated approach for the reconstruction of TRNs that retrieve the relevant information from important biological databases and insert it into a unique repository, named KREN. Also, we applied text mining techniques over this integrated repository to build TRNs. However, was necessary to create a dictionary of names and synonyms associated with these entities and also develop an approach that retrieves all the abstracts from the related scientific papers stored on PubMed, in order to create a corpora of data about genes. Furthermore, these tasks were integrated into @Note, a software system that allows to use some methods from the Biomedical Text Mining field, including an algorithms for Named Entity Recognition (NER), extraction of all relevant terms from publication abstracts, extraction relationships between biological entities (genes, proteins and transcription factors). And finally, extended this tool to allow the reconstruction Transcriptional Regulatory Networks through using scientific literature.
Resumo:
Objectives: The therapeutic effects of transcranial magnetic stimulation (TMS) and transcranial direct current stimulation in patients with major depression have shown promising results; however, there is a lack of mechanistic studies using biological markers (BMs) as an outcome. Therefore, our aim was to review noninvasive brain stimulation trials in depression using BMs. Methods: The following databases were used for our systematic review: MEDLINE, Web of Science, Cochrane, and SCIELO. We examined articles published before November 2012 that used TMS and transcranial direct current stimulation as an intervention for depression and had BM as an outcome measure. The search was limited to human studies written in English. Results: Of 1234 potential articles, 52 articles were included. Only studies using TMS were found. Biological markers included immune and endocrine serum markers, neuroimaging techniques, and electrophysiological outcomes. In 12 articles (21.4%), end point BM measurements were not significantly associated with clinical outcomes. All studies reached significant results in the main clinical rating scales. Biological marker outcomes were used as predictors of response, to understand mechanisms of TMS, and as a surrogate of safety. Conclusions: Functional magnetic resonance imaging, single-photon emission computed tomography, positron emission tomography, magnetic resonance spectroscopy, cortical excitability, and brain-derived neurotrophic factor consistently showed positive results. Brain-derived neurotrophic factor was the best predictor of patients’ likeliness to respond. These initial results are promising; however, all studies investigating BMs are small, used heterogeneous samples, and did not take into account confounders such as age, sex, or family history. Based on our findings, we recommend further studies to validate BMs in noninvasive brain stimulation trials in MDD.
Resumo:
Purpose: Fifty percent of patients with Multiple Sclerosis (MS) are estimated to have cognitive impairments leading to considerable decline in productivity and quality of life. Cognitive intervention has been considered to complement pharmacological treatments. However, a lack of agreement concerning the efficacy of cognitive interventions in MS still exists. A systematic review and meta-analysis was conducted to assess the effects of cognitive interventions in MS. Methods: To overcome limitations of previous meta-analyses, several databases were searched only for Randomized Clinical Trials (RCTs) with low risk of bias. Results: Five studies (total of 139 participants) met our eligibility criteria. Although good completion and adherence rates were evident, we found no evidence of intervention effects on cognition or mood in post-intervention or follow-up assessments. Conclusions: This is the first meta-analysis assessing the effects of cognitive intervention in MS including only RCTs with comparable conditions. Research regarding efficacy, cost-effectiveness and feasibility is still in its infancy. Caution is advised when interpreting these results due to the small number of RCTs meeting the inclusion criteria. Considering the costs of disease, good completion and adherence rates of this approach, further research is warranted. Recommendations concerning improved research practices in the field are presented as well.
Resumo:
We assessed aquatic hyphomycete diversity in autumn and spring on oak leaves decomposing in five streams along a gradient of eutrophication in the Northwest of Portugal. Diversity was assessed through microscopy-based (identification by spore morphology) and DNA-based techniques (Denaturing Gradient Gel Electrophoresis and 454 pyrosequencing). Pyrosequencing revealed five times greater diversity than DGGE. About 21% of all aquatic hyphomycete species were exclusively detected by pyrosequencing and 26% exclusively by spore identification. In some streams, more than half of the recorded species would have remained undetected if we had relied only on spore identification. Nevertheless, in spring aquatic hyphomycete diversity was higher based on spore identification, probably because many species occurring in this season are not yet connected to ITS barcodes in genetic databases. Pyrosequencing was a powerful tool for revealing aquatic hyphomycete diversity on decomposing plant litter in streams and we strongly encourage researchers to continue the effort in barcoding fungal species.
Resumo:
Dissertação de mestrado integrado em Engenharia e Gestão de Sistemas de Informação
Resumo:
INTRODUCTION: Neuroimaging studies suggest that obese people might show hyperactivity of brain areas regarding reward processing, and hypoactivity of brain areas concerning cognitive control, when exposed to food cues. Although the effects of bariatric surgery on the central nervous system and eating behavior are well known, few studies have used neuroimage techniques with the aim of investigating the central effects of bariatric surgery in humans. OBJECTIVES: This paper systematically and critically reviews studies using functional neuroimaging to investigate changes on the patterns of activation of central areas related to the regulation of eating behavior after bariatric surgery. METHOD: A search on the databases Medline, Web of Science, Lilacs and Science Direct on Line, was conducted in February 2013, using the keywords "Neuroimaging", "Positron-Emission Tomography", "Magnetic Resonance Imaging", "Gastric Bypass", "Gastroplasty", "Jejunoileal Bypass", "Bariatric Surgery". RESULTS: Seven manuscripts were included; the great majority studied the central effects of Roux en Y gastric bypass, using positron emission tomography or functional magnetic resonance. CONCLUSIONS: Bariatric surgery might normalize the activity of central areas concerned with reward and incentive salience processing, as the nucleus accumbens and mesencephalic tegmental ventral area, as well as circuitries processing behavioral inhibition, as the dorsolateral prefrontal cortex.
Resumo:
Tese de Doutoramento em Engenharia Civil.