893 resultados para Immune Reconstitution Inflammatory Syndrome


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We conducted a systematic literature review on psychological and behavioral comorbidities in patients with inflammatory neuropathies. In Guillain-Barré syndrome (GBS), psychotic symptoms are reported during early stages in 30% of patients. Typical associations include mechanical ventilation, autonomic dysfunction, inability to communicate, and severe weakness. Anxiety and depression are frequent comorbidities. Anxiety may increase post-hospital admissions and be a predictor of mechanical ventilation. Post-traumatic stress disorder may affect up to 20% of ventilated patients. Sleep disturbances are common in early-stage GBS, affecting up to 50% of patients. In chronic inflammatory demyelinating polyradiculoneuropathy, memory and quality of sleep may be impaired. An independent link between depression and pre-treatment upper limb disability and ascites was reported in POEMS (Polyneuropathy, Organomegaly, Endocrinopathy, M-protein, Skin) syndrome, with an association with early death. Hematological treatment of POEMS appears effective on depression. Published literature on psychological/behavioral manifestations in inflammatory neuropathies remains scarce, and further research is needed. This article is protected by copyright. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction. Guillain-Barré syndrome (GBS) is an immune-mediated polyneuropathy and the principal cause of acute neuromuscular paralysis. The most prominent GBS subtypes are: acute inflammatory demyelinating polyneuropathy (AIDP), acute motor axonal neuropathy (AMAN), acute motor-sensory axonal neuropathy (AMSAN) and Fisher syndrome (FS). Differences in geographical distribution of variants have been reported. In Brazil, there are few studies describing the characteristics of GBS, but none on the frequency of GBS variants and their clinical manifestations. Infection-induced aberrant immune response resulting from molecular mimicry and formation of cross-reacting antibodies, contribute to complement activation. Functional biallelic polymorphism in immunoglobulin receptors that influence the affinity of IgG subclasses and the type of immune response have been described, suggesting genetic susceptibility to developing disease. It remains unclear whether individuals carrying different FCGR alleles have differential risk for GBS and⁄or disease severity. The goals of this study were: (1) To characterize GBS and describe the clinical findings in a cohort of patients with GBS from the state of Rio Grande do Norte, Brazil; (2) to determine whether polymorphism in FCGR were associated with development of GBS, and (3) to tease out whether the global gene expression studies could be a tool to identify pathways and transcriptional networks which could be regulated and decrease the time of disease. Methods. Clinical and laboratory data for 149 cases of GBS diagnosed from 1994 to 2013 were analyzed. Genomic DNA and total RNA were extracted from whole blood. Antigangliosides antibodies were determined in the sera. In addition, we also assessed whether FCGR polymorphism are present in GBS (n=141) and blood donors (n=364), and global gene expressions were determined for 12 participants with GBS. Blood samples were collected at the diagnosis and post-recovery. Results. AIDP was the most frequent variant (81.8%) of GBS, followed by AMAN (14.7%) and AMSAN (3.3%). The incidence of GBS was 0.3 ⁄ 100,000 people for the state of Rio Grande do Norte and cases occurred at a younger age. GBS was preceded by infections, with the axonal variant associated with episodes of diarrhea (P = 0.025). Proximal weakness was more frequent in AIDP, and distal weakness predominant in the axonal variant. Compared to 42.4% of cases with AIDP (P<0.0001), 84.6% of cases with the axonal variant had nadir in <10 days. Individuals with the axonal variant took longer to recover deambulation (P<0.0001). The mortality of GBS was 5.3%. A worse outcome was related to an axonal variant (OR17.063; P=0.03) and time required to improve one point in the Hughes functional scale (OR 1.028; P=0.03). The FCGR genotypes and allele frequencies did not differ significantly between the patients with GBS and the controls (FCGR2A p=0.367 and FCGR3A p=0.2430). Global gene expression using RNAseq showed variation in transcript coding for protein isoforms during acute phase of disease. Conclusions. The annual incidence of GBS was 0.3 per 100,00 and there was no seasonal pattern. A predominance of the AIDP variant was seen, and the incidence of the disease decreased with age. The distribution of weakness is a function of the clinical variants, and individuals with the axonal variant had a poorer prognosis. Early diagnosis and variant identification leads to proper intervention decreasing in long-term morbidity. FCGR polymorphisms do not seem to influence susceptibility to GBS in this population. This study found deregulated genes and signs of transcriptional network alterations during the acute and recovery phases in GBS. Identification of pathways altered during disease might be target for immune regulation and with potential to ameliorate symptoms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Statins are a class of drug that inhibits cholesterol biosynthesis, and are used to treat patients with high serum cholesterol levels. They exert this function by competitively binding to the enzyme 3-hydroxy-3-methylglutaryl-CoenzymeA reductase (HMGR), which catalyses the formation of mevalonate, a rate-limiting step in cholesterol biosynthesis. In addition, statins have what are called “pleiotropic effects”, which include the reduction of inflammation, immunomodulation, and antimicrobial effects. Statins can also improve survival of patients with sepsis and pneumonia. Cystic fibrosis (CF) is the most common recessive inherited disease in the Caucasian population, which is characterised by factors including, but not limited to, excessive lung inflammation and increased susceptibility to infection. Therefore, the overall objective of this study was to examine the effects of statins on CFassociated bacterial pathogens and the host response. In this work, the prevalence of HMGR was examined in respiratory pathogens, and several CF-associated pathogens were found to possess homologues of this enzyme. HMGR homology was analysed in Staphylococcus aureus, Burkholderia cenocepacia and Streptococcus pneumoniae, and the HMGR of B. cenocepacia was found to have significant conservation to that of Pseudomonas mevalonii, which is the most widely-characterised bacterial HMGR. However, in silico analysis revealed that, unlike S. aureus and S. pneumoniae, B. cenocepacia did not possess homologues of other mevalonate pathway proteins, and that the HMGR of B. cenocepacia appeared to be involved in an alternative metabolic pathway. The effect of simvastatin was subsequently tested on the growth and virulence of S. aureus, B. cenocepacia and S. pneumoniae. Simvastatin inhibited the growth of all 3 species in a dose-dependent manner. In addition, statin treatment also attenuated biofilm formation of all 3 species, and reduced in vitro motility of S. aureus. Interestingly, simvastatin also increased the potency of the aminoglycoside antibiotic gentamicin against B. cenocepacia. The impact of statins was subsequently tested on the predominant CF-associated pathogen Pseudomonas aeruginosa, which does not possess a HMGR homologue. Mevastatin, lovastatin and simvastatin did not influence the growth of this species. However, sub-inhibitory statin concentrations reduced the swarming motility and biofilm formation of P. aeruginosa. The influence of statins was also examined on Type 3 toxin secretion, quorum sensing and chemotaxis, and no statin effect was observed on any of these phenotypes. Statins did not appear to have a characteristic effect on the P. aeruginosa transcriptome. However, a mutant library screen revealed that the effect of statins on P. aeruginosa biofilm was mediated through the PvrR regulator and the Cup fimbrial biosynthesis genes. Furthermore, proteomic analysis demonstrated that 6 proteins were reproducibly induced by simvastatin in the P. aeruginosa swarming cells. The effect of statins on the regulation of the host-P. aeruginosa immune response was also investigated. Statin treatment increased expression of the pro-inflammatory cytokines IL-8 and CCL20 in lung epithelial cells, but did not attenuate P. aeruginosa-mediated inflammatory gene induction. In fact, simvastatin and P. aeruginosa caused a synergistic effect on CCL20 expression. The expression of the transcriptional regulators KLF2 and KLF6 was also increased by statins and P. aeruginosa, with the induction of KLF6 by simvastatin proving to be a novel effect. Interestingly, both statins and P. aeruginosa were capable of inducing alternative splicing of KLF6. P. aeruginosa was found to induce KLF6 alternative splicing by way of the type 3 secreted toxin ExoS. In addition, a mechanistic role was elucidated for KLF6 in the lung, as it was determined that statin-mediated induction of this protein was responsible for the induction of the host response genes CCL20 and iNOS. Moreover, statin treatment caused a slight increase in infection-related cytotoxicity, and increased bacterial adhesion to cells. Taken together, these data demonstrate that statins can reduce the virulence of CFassociated bacterial pathogens and alter host response effectors. Furthermore, novel statin effectors were identified in both bacterial and host cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our group has pioneered the development of a live-attenuated poliovirus, called PVSRIPO, for the purpose of targeting cancer. Despite clinical progress, the cancer selective cytotoxicity and immunotherapeutic potential of PVSRIPO has not yet been mechanistically dissected. Defining such mechanisms may inform its clinical application.

Herein I describe the discovery of a mechanism by which the MAP-Kinase Interacting Kinases (MNKs) regulate PVSRIPO cytotoxicity in cancer. In doing so, I delineate a novel, intricate network connecting the MNK and mTOR signaling pathway that regulates activity of a splicing kinase called the Ser-Arg Rich Protein Kinase (SRPK), and define SRPK as an impediment to IRES mediated translation. Moreover, I demonstrate that MNK regulates mTORC1 associations that determine its substrate proximity and thus, activity. In a collaborative effort, we found that PVSRIPO oncolysis produces antigen specific, cytolytic anti-tumor immunity in an in vitro human system and that much of the observed adjuvancy is due to the direct infection of dendritic cells (DCs) by the virus itself; implicating PVSRIPO as a potent adjuvant. In summary, oncogenic signaling in part through MNK leads to cancer specific cytotoxicity by PVSRIPO that engages an inflammatory environment conducive to DC activation and antigen specific T cell antigen immunity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanisms responsible for increased cardiovascular risk associated with HIV-1 infection are incompletely defined. Using flow cytometry, in the present study, we examined activation phenotypes of monocyte subpopulations in patients with HIV-1 infection or acute coronary syndrome to find common cellular profiles. Nonclassic (CD14(+)CD16(++)) and intermediate (CD14(++)CD16(+)) monocytes are proportionally increased and express high levels of tissue factor and CD62P in HIV-1 infection. These proportions are related to viremia, T-cell activation, and plasma levels of IL-6. In vitro exposure of whole blood samples from uninfected control donors to lipopolysaccharide increased surface tissue factor expression on all monocyte subsets, but exposure to HIV-1 resulted in activation only of nonclassic monocytes. Remarkably, the profile of monocyte activation in uncontrolled HIV-1 disease mirrors that of acute coronary syndrome in uninfected persons. Therefore, drivers of immune activation and inflammation in HIV-1 disease may alter monocyte subpopulations and activation phenotype, contributing to a pro-atherothrombotic state that may drive cardiovascular risk in HIV-1 infection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Maternal infection during pregnancy increases the risk of several neuropsychiatric disorders later in life, many of which have a component of dopaminergic (DA) dysfunction, including schizophrenia, autism spectrum disorders (ASD), and attention deficit hyperactivity disorder (ADHD). The majority of DA neurons are found in the adult midbrain; as such the midbrain is a key region of interest regarding these disorders. The literature is conflicting regarding the behavioral alterations following maternal immune activation (MIA) exposure, and the cellular and molecular consequences of MIA on the developing midbrain remain to be fully elucidated. Thus, this thesis aimed to establish the consequences of acute and mild MIA on offspring dopamine-related behaviors, as well as the associated cellular and molecular disturbances of MIA on offspring midbrains. We utilized a rat model of MIA using low dose (50μg/kg, I.P.) of LPS administered at different gestational ages. Our first study indicated that MIA at later gestational ages significantly increased pro-inflammatory IL-1β expression, and reduced HSD11B2 expression in the placenta, which is an important regulator of fetal development. In utero LPS exposure at later gestational ages also impaired the growth of neurons from affected offspring. This study identified key gestational stages during which MIA resulted in differential effects. We utilized these time points in subsequent studies, the next of which investigated neurobehavioral outcomes following MIA. Our results from that study showed that motor differences occurred in juvenile offspring following MIA at E16 only, and these differences were compensated for in adolescence. Then, there was a decline in motor behavior capabilities in adulthood, again only for animals exposed to MIA on E16 (and not E12). Furthermore, our results also demonstrated adolescent and adult offspring that were exposed to MIA at E12 had diminished responses to amphetamine in reward seeking behaviors. In our final study, we aimed to investigate the molecular and cellular changes following MIA which might explain these behavioral alterations. This final study showed a differential inflammatory response in fetal midbrains depending on gestational age of exposure as well as differential developmental alterations. For example, LPS exposure at E16 resulted in decreased VM neurosphere size after 7DIV and this was associated with an increased susceptibility to neurotoxic effects of pro-inflammatory cytokines for VM neurospheres and VM DA neurons treated in culture. In utero LPS exposure at E16 also reduced DA neuron count of fetal VM, measured by TH staining. However, there were no differences in DA neuron number in juvenile, adolescent, or adult offspring. Similarly, LPS exposure did not alter cell number or morphology of glial cells in the midbrains of affected offspring. In conclusion, this thesis indicated later rat pregnancy (E16) as vulnerable time for MIA to affect the development of the nigrostriatal pathway and subsequent behavioral outcomes, possibly implicating a role for MIA in increased risk for disorders associated with motor behavior, like PD. These effects may be mediated through alterations in the placenta and altered inflammatory mediators in the offspring brain. This thesis has also shown that MIA in earlier rat pregnancy (E12) results in altered mesocorticolimbic function, and in particular MIA on E12 resulted in a differential response to amphetamine in affected offspring, which may implicate a role for MIA in increasing the risk for disorders associated with this pathway, including drug tolerance and addiction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Overactive Bladder (OAB) and Bladder Pain Syndrome (BPS) are debilitating disorders for which the pathophysiological mechanisms are poorly understood. Injury or dysfunction of the protective urothelial barrier layer, specifically the proteoglycan composition and number, has been proposed as the primary pathological characteristic of BPS. For OAB, the myogenic theory with dysfunction of the muscarinic receptors is the most reiterated hypothesis. For both over activity of the inflammatory response has been posited to play a major role in these diseases. We hypothesise that BPS and OAB are peripheral sensory disorders, with an increase in inflammatory mediators, such as cytokines and chemokines, which are capable of activating, either directly or indirectly, sensory nerve activity causing the disease. The aim of the PhD is to identify potential new therapeutic targets for the treatment of BPS and OAB. We used medium throughput quantitative gene expression analysis of 96 inflammation associated mediators to measure gene expression levels in BPS and OAB bladder biopsies and compared them to control samples. Then we created a novel animal model of disease by specific proteoglycan deglycosylation of the bladder mucosal barrier, using the bacterial enzymes Chondroitinase ABC and Heparanase III. These enzymes specifically remove the glycosaminoglycan side chains from the urothelial proteoglycan molecules. We tested role of the identified mediators in this animal model. In addition, in order to determine on which patients peripheral treatment strategies may work, we assessed the effect of local anaesthetics on patients with bladder pain. Gene expression analysis did not reveal a difference in inflammatory genes in the OAB versus control biopsies. However, several genes were upregulated in BPS versus control samples, from which two genes, FGF7 and CLL21 were correlated with patient clinical phenotypes for ICS/PI symptom and problem indices respectively. In order to determine which patients are likely to respond to treatment, we sought to characterise the bladder pain in BPS patients. Using urodynamics and local anaesthetics, we differentiated patients with peripherally mediated pain and patients with central sensitisation of their pain. Finally to determine the role of these mediators in bladder pain, we created an animal model of disease, which specifically replicates the human pathology: namely disruption in the barrier proteoglycan molecules. CCL21 led to an increase in painrelated behaviour, while FGF7 attenuated this behaviour, as measured by cystometry, spinal c-fos expression and mechanical withdrawal threshold examination. In conclusion, we have identified CCL21 and FGF7 as potential targets for the treatment of BPS. Manipulation of these ligands or their receptors may prove to be valuable previously unexploited targets for the treatment of BPS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Postoperative delirium is prevalent in older patients and associated with worse outcomes. Recent data in animal studies demonstrate increases in inflammatory markers in plasma and cerebrospinal fluid (CSF) even after aseptic surgery, suggesting that inflammation of the central nervous system may be part of the pathogenesis of postoperative cognitive changes. We investigated the hypothesis that neuroinflammation was an important cause for postoperative delirium and cognitive dysfunction after major non-cardiac surgery. METHODS: After Institutional Review Board approval and informed consent, we recruited patients undergoing major knee surgery who received spinal anesthesia and femoral nerve block with intravenous sedation. All patients had an indwelling spinal catheter placed at the time of spinal anesthesia that was left in place for up to 24 h. Plasma and CSF samples were collected preoperatively and at 3, 6, and 18 h postoperatively. Cytokine levels were measured using ELISA and Luminex. Postoperative delirium was determined using the confusion assessment method, and cognitive dysfunction was measured using validated cognitive tests (word list, verbal fluency test, digit symbol test). RESULTS: Ten patients with complete datasets were included. One patient developed postoperative delirium, and six patients developed postoperative cognitive dysfunction. Postoperatively, at different time points, statistically significant changes compared to baseline were present in IL-5, IL-6, I-8, IL-10, monocyte chemotactic protein (MCP)-1, macrophage inflammatory protein (MIP)-1α, IL-6/IL-10, and receptor for advanced glycation end products in plasma and in IFN-γ, IL-6, IL-8, IL-10, MCP-1, MIP-1α, MIP-1β, IL-8/IL-10, and TNF-α in CSF. CONCLUSIONS: Substantial pro- and anti-inflammatory activity in the central neural system after surgery was found. If confirmed by larger studies, persistent changes in cytokine levels may serve as biomarkers for novel clinical trials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Duchenne muscular dystrophy (DMD) is an X chromosome-linked disease characterized by progressive physical disability, immobility, and premature death in affected boys. Underlying the devastating symptoms of DMD is the loss of dystrophin, a structural protein that connects the extracellular matrix to the cell cytoskeleton and provides protection against contraction-induced damage in muscle cells, leading to chronic peripheral inflammation. However, dystrophin is also expressed in neurons within specific brain regions, including the hippocampus, a structure associated with learning and memory formation. Linked to this, a subset of boys with DMD exhibit nonprogressing cognitive dysfunction, with deficits in verbal, short-term, and working memory. Furthermore, in the genetically comparable dystrophin-deficient mdx mouse model of DMD, some, but not all, types of learning and memory are deficient, and specific deficits in synaptogenesis and channel clustering at synapses has been noted. Little consideration has been devoted to the cognitive deficits associated with DMD compared with the research conducted into the peripheral effects of dystrophin deficiency. Therefore, this review focuses on what is known about the role of full-length dystrophin (Dp427) in hippocampal neurons. The importance of dystrophin in learning and memory is assessed, and the potential importance that inflammatory mediators, which are chronically elevated in dystrophinopathies, may have on hippocampal function is also evaluated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cysteine protease cathepsin C (CatC) activates granule-associated proinflammatory serine proteases in hematopoietic precursor cells. Its early inhibition in the bone marrow is regarded as a new therapeutic strategy for treating proteolysis-driven chronic inflammatory diseases, but its complete inhibition is elusive in vivo Controlling the activity of CatC may be achieved by directly inhibiting its activity with a specific inhibitor or/and by preventing its maturation. We have investigated immunochemically and kinetically the occurrence of CatC and its proform in human hematopoietic precursor cells and in differentiated mature immune cells in lung secretions. The maturation of proCatC obeys a multistep mechanism that can be entirely managed by CatS in neutrophilic precursor cells. CatS inhibition by a cell-permeable inhibitor abrogated the release of the heavy and light chains from proCatC and blocked ∼80% of CatC activity. Under these conditions the activity of neutrophil serine proteases, however, was not abolished in precursor cell cultures. In patients with neutrophilic lung inflammation, mature CatC is found in large amounts in sputa. It is secreted by activated neutrophils as confirmed through lipopolysaccharide administration in a nonhuman primate model. CatS inhibitors currently in clinical trials are expected to decrease the activity of neutrophilic CatC without affecting those of elastase-like serine proteases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background

It is unknown whether a conservative approach to fluid administration or deresuscitation (active removal of fluid using diuretics or renal replacement therapy) is beneficial following haemodynamic stabilisation of critically ill patients.

Purpose

To evaluate the efficacy and safety of conservative or deresuscitative fluid strategies in adults and children with acute respiratory distress syndrome (ARDS), sepsis or systemic inflammatory response syndrome (SIRS) in the post-resuscitation phase of critical illness.

Methods

We searched Medline, EMBASE and the Cochrane central register of controlled trials from 1980 to June 2016, and manually reviewed relevant conference proceedings from 2009 to the present. Two reviewers independently assessed search results for inclusion and undertook data extraction and quality appraisal. We included randomised trials comparing fluid regimens with differing fluid balances between groups, and observational studies investigating the relationship between fluid balance and clinical outcomes.

Results

Forty-nine studies met the inclusion criteria. Marked clinical heterogeneity was evident. In a meta-analysis of 11 randomised trials (2051 patients) using a random-effects model, we found no significant difference in mortality with conservative or deresuscitative strategies compared with a liberal strategy or usual care [pooled risk ratio (RR) 0.92, 95 % confidence interval (CI) 0.82–1.02, I2 = 0 %]. A conservative or deresuscitative strategy resulted in increased ventilator-free days (mean difference 1.82 days, 95 % CI 0.53–3.10, I2 = 9 %) and reduced length of ICU stay (mean difference −1.88 days, 95 % CI −0.12 to −3.64, I2 = 75 %) compared with a liberal strategy or standard care.

Conclusions

In adults and children with ARDS, sepsis or SIRS, a conservative or deresuscitative fluid strategy results in an increased number of ventilator-free days and a decreased length of ICU stay compared with a liberal strategy or standard care. The effect on mortality remains uncertain. Large randomised trials are needed to determine optimal fluid strategies in critical illness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Leishmania major parasites reside and multiply in late endosomal compartments of host phagocytic cells. Immune control of Leishmania growth absolutely requires expression of inducible Nitric Oxide Synthase (iNOS/NOS2) and subsequent production of NO. Here, we show that CD11b+ CD11c+ Ly-6C+ MHC-II+ cells are the main iNOS-producing cells in the footpad lesion and in the draining lymph node of Leishmania major-infected C57BL/6 mice. These cells are phenotypically similar to iNOS-producing inflammatory DC (iNOS-DC) observed in the mouse models of Listeria monocytogenes and Brucella melitensis infection. The use of DsRed-expressing parasites demonstrated that these iNOS-producing cells are the major infected population in the lesions and the draining lymph nodes. Analysis of various genetically deficient mouse strains revealed the requirement of CCR2 expression for the recruitment of iNOS-DC in the draining lymph nodes, whereas their activation is strongly dependent on CD40, IL-12, IFN-gamma and MyD88 molecules with a partial contribution of TNF-alpha and TLR9. In contrast, STAT-6 deficiency enhanced iNOS-DC recruitment and activation in susceptible BALB/c mice, demonstrating a key role for IL-4 and IL-13 as negative regulators. Taken together, our results suggest that iNOS-DC represent a major class of Th1-regulated effector cell population and constitute the most frequent infected cell type during chronic Leishmania major infection phase of C57BL/6 resistant mice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phagocytosis of bacteria by specialized blood cells, known as hemocytes, is a vital component of Drosophila cellular immunity. To identify novel genes that mediate the cellular response to bacteria, we conducted three separate genetic screens using the Drosophila Genetic Reference Panel (DGRP). Adult DGRP lines were tested for the ability of their hemocytes to phagocytose the Gram-positive bacteria Staphylococcus aureus or the Gram-negative bacteria Escherichia coli. The DGRP lines were also screened for the ability of their hemocytes to clear S. aureus infection through the process of phagosome maturation. Genome-wide association analyses were performed to identify potentially relevant single nucleotide polymorphisms (SNPs) associated with the cellular immune phenotypes. The S. aureus phagosome maturation screen identified SNPs near or in 528 candidate genes, many of which have no known role in immunity. Three genes, dpr10, fred, and CG42673, were identified whose loss-of-function in blood cells significantly impaired the innate immune response to S. aureus. The DGRP S. aureus screens identified variants in the gene, Ataxin 2 Binding Protein-1 (A2bp1) as important for the cellular immune response to S. aureus. A2bp1 belongs to the highly conserved Fox-1 family of RNA-binding proteins. Genetic studies revealed that A2bp1 transcript levels must be tightly controlled for hemocytes to successfully phagocytose S. aureus. The transcriptome of infected and uninfected hemocytes from wild type and A2bp1 mutant flies was analyzed and it was found that A2bp1 negatively regulates the expression of the Immunoglobulin-superfamily member Down syndrome adhesion molecule 4 (Dscam4). Silencing of A2bp1 and Dscam4 in hemocytes rescues the fly’s immune response to S. aureus indicating that Dscam4 negatively regulates S. aureus phagocytosis. Overall, we present an examination of the cellular immune response to bacteria with the aim of identifying and characterizing roles for novel mediators of innate immunity in Drosophila. By screening panel of lines in which all genetic variants are known, we successfully identified a large set of candidate genes that could provide a basis for future studies of Drosophila cellular immunity. Finally, we describe a novel, immune-specific role for the highly conserved Fox-1 family member, A2bp1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Immune-mediated necrotizing myopathies (IMNM) are recognized as a subgroup of idiopathic inflammatory myopathies (IIM). IMNM are defined based on a combination of clinical presentation and laboratory studies, requiring a specific myopathological pattern on muscle biopsy for diagnosis. The authors describe a case of a patient with necrotizing myopathy, thought to be immune mediated, highlighting the challenge of its differential diagnosis. As clinical assessment and diagnostic tools sometimes fail to determine whether a necrotizing myopathy is immune mediated, leading to misdiagnosis and a compromise of the optimal therapeutic approach, distinguishing between IMNM and other myopathies is crucial.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies of chemokine receptors (CKR) in natural killer- (NK-) cells have already been published, but only a few gave detailed information on its differential expression on blood NK-cell subsets. We report on the expression of the inflammatory and homeostatic CKR on normal blood CD56(+low) CD16(+) and CD56(+high)  CD16(-/+low) NK-cells. Conventional CD56(+low) and CD56(+high) NK-cells present in the normal PB do express CKR for inflammatory cytokines, although with different patterns CD56(+low) NK-cells are mainly CXCR1/CXCR2(+) and CXCR3/CCR5(-/+), whereas mostly CD56(+high) NK-cells are CXCR1/CXCR2(-) and CXCR3/CCR5(+). Both NK-cell subsets have variable CXCR4 expression and are CCR4(-) and CCR6(-). The CKR repertoire of the CD56(+low) NK-cells approaches to that of neutrophils, whereas the CKR repertoire of the CD56(+high) NK-cells mimics that of Th1(+) T cells, suggesting that these cells are prepared to migrate into inflamed tissues at different phases of the immune response. In addition, we describe a subpopulation of NK-cells with intermediate levels of CD56 expression, which we named CD56(+int) NK-cells. These NK-cells are CXCR3/CCR5(+), they have intermediate levels of expression of CD16, CD62L, CD94, and CD122, and they are CD57(-) and CD158a(-). In view of their phenotypic features, we hypothesize that they correspond to a transitional stage, between the well-known CD56(+high) and CD56(+low) NK-cells populations.