966 resultados para INSULIN-DEPENDENT DIABETICS
Resumo:
Specific point mutations in caveolin-3, a predominantly muscle-specific member of the caveolin family, have been implicated in limb-girdle muscular dystrophy and in rippling muscle disease. We examined the effect of these mutations on caveolin-3 localization and function. Using two independent assay systems, Raf activation in fibroblasts and neurite extension in PC12 cells, we show that one of the caveolin-3 point mutants, caveolin-3-C71W, specifically inhibits signaling by activated H-Ras but not by K-Ras. To gain insights into the effect of the mutant protein on H-Ras signaling, we examined the localization of the mutant proteins in fibroblastic cells and in differentiating myotubes. Unlike the previously characterized caveolin-3-DGV mutant, the inhibitory caveolin-3-C71W mutant reached the plasma membrane and colocalized with wild type caveolins. In BHK cells, caveolin-3-C71W associated with caveolae and in differentiating muscle cells with the developing T-tubule system. In contrast, the caveolin-3-P104L mutant accumulated in the Golgi complex and had no effect on H-Ras-mediated Raf activation. Inhibition by caveolin-3-C71W was rescued by cholesterol addition, suggesting that the mutant protein perturbs cholesterol-rich raft domains. Thus, we have demonstrated that a naturally occurring caveolin-3 mutation can inhibit signaling involving cholesterol-sensitive raft domains.
Resumo:
Previous studies have shown a significant effect of insulin administration on serum dehydroepiandrosterone sulfate (DHEA-S) concentration and its metabolic rate, with evidence for the effect in men, but not in women. This could lead to differences in the sources of variation in serum DHEA-S between men and women and in its covariation with insulin concentration. This study aimed to test whether these hypotheses were supported in a sample of healthy adult twins. Serum DHEA-S (n=2287) and plasma insulin (n=2436) were measured in samples from adult male and female twins recruited through the Australian Twin Registry. Models of genetic and environmental sources of variation and covariation were tested against the data. DHEA-S showed substantial genetic effects in both men and women after adjustment for covariates, including sex, age, body mass index, and time since the last meal. There was no significant phenotypic or genetic correlation between DHEA-S and insulin in either men or women. Despite the experimental evidence for insulin infusion producing a reduction in serum DHEA-S and some effect of meals on the observed DHEA-S concentration, there were no associations between insulin and DHEA-S at the population level. Variations in DHEA-S are due to age, sex, obesity, and substantial polygenic genetic influences.
Resumo:
Acid demineralization of teeth causes occlusal erosion and attrition and associated non-carious cervical lesions at sites relatively unprotected by saliva. Associations of occlusal pathology and cervical lesions were looked for in 450 patients with toothwear, and 174 subjects with cervical lesions were identified. Associations of occlusal attrition, or erosion, or no wear, with cervical lesions at 72 buccal and lingual sites were recorded from epoxy resin replicas of the subjects' dentitions (3241 teeth). Criteria used to discriminate occlusal erosion from attrition; and shallow from grooved and wedge-shaped cervical lesions were delineated by scanning electron microscopy (SEM). In the absence of occlusal pathology, cervical lesions were very rare (
Resumo:
Adipose tissue is a highly active endocrine organ secreting a range of soluble products with both local and distant actions. These hormones have important roles in metabolism, reproduction, cardiovascular function and immunity. It is now evident that adipose endocrine function directly influences other organ systems, including the brain, liver and skeletal muscle. The endocrine function of adipose tissue is significantly regulated by nutritional status, and both are inextricably linked to the energy storage role of adipose tissue. This chapter highlights the endocrinology of adipose tissue by concentrating on functional aspects of the secreted products. The data of particular relevance to humans are highlighted, and areas in need of future research are suggested.
Resumo:
The effect of dietary chromium supplementation on glucose and insulin metabolism in healthy, non-obese cats was evaluated. Thirty-two cats were randomly divided into four groups and fed experimental diets consisting of a standard diet with 0 ppb (control), 150 ppb, 300 ppb, or 600 ppb added chromium as chromium tripicolinate. Intravenous glucose tolerance, insulin tolerance and insulin sensitivity tests with minimal model analysis were performed before and after 6 weeks of feeding the test diets. During the glucose tolerance test, glucose concentrations, area under the glucose concentration-time curve, and glucose half-life (300 ppb only), were significantly lower after the trial in cats supplemented with 300 ppb and 600 ppb chromium, compared with values before the trial. Fasting glucose concentrations measured on a different day in the biochemistry profile were also significantly lower after supplementation with 600 ppb chromium. There were no significant differences in insulin concentrations or indices in either the glucose or insulin tolerance tests following chromium supplementation, nor were there any differences between groups before or after the dietary trial. Importantly, this study has shown a small but significant, dose-dependent improvement in glucose tolerance in healthy, non-obese cats supplemented with dietary chromium. Further long-term studies are warranted to determine if the addition of chromium to feline diets is advantageous. Cats most likely to benefit are those with glucose intolerance and insulin resistance from lack of exercise, obesity and old age. Healthy cats at risk of glucose intolerance and diabetes from underlying low insulin sensitivity or genetic factors may also benefit from long-term chromium supplementation. (C) 2002 ESFM and AAFP.
Resumo:
Phenylethanolamine N-methyltransferase, PNMT, utilizes the methylating cofactor S-adenosyl-L-methionine to catalyse the synthesis of adrenaline. Human PNMT has been crystallized in complex with an inhibitor and the cofactor product S-adenosyl-L-homocysteine using the hanging-drop technique with PEG 6000 and lithium chloride as precipitant. A critical requirement for crystallization was a high enzyme concentration (>90 mg ml(-1)) and cryocrystallography was used for high-quality data measurement. Diffraction data measured from a cryocooled crystal extend to a resolution of 2.3 Angstrom. Cryocooled crystals belong to space group P4(3)2(1)2 and have unit-cell parameters a = b = 94.3, c = 187.7 Angstrom.
Resumo:
Recent studies have shown that phox homology (PX) domains act as phosphoinositide-binding motifs. The majority of PX domains studied show binding to phosphatidylinositol 3-monophosphate (Ptdlns(3)P), an association that allows the host protein to localize to membranes of the endocytic pathway. One issue, however, is whether PX domains may have alternative phosphoinositide binding specificities that could target their host protein to distinct subcellular compartments or allow their allosteric regulation by phosphoinositides other than PtdIns(3)P. It has been reported that the PX domain of sorting nexin 1 (SNX1) specifically binds phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P-3) (Zhong, Q., Lazar, C. S., Tronchere, H., Sato, T., Meerloo, T., Yeo, M., Songyang, Z., Emr, S. D., and Gill, G. N. (2002) Proc. Natl. Acad. Sci. U. S. A. 99,6767-6772). In the present study, we have shown that whereas SNX1 binds PtdIns(3,4,5)P-3 in protein:lipid overlay assays, in liposomes-based assays, binding is observed to PtdIns(3)P and phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P-2) but not to PtdIns(3,4,5)P-3. To address the significance of PtdIns(3,4,5)P-3 binding, we examined the subcellular localization of SNX1 under conditions in which plasma membrane PtdIns(3,4,5)P-3 levels were significantly elevated. Under these conditions, we failed to observe association of SNX1 with this membrane. However, consistent with the binding to PtdIns(3)P and PtdIns(3,5)P-2 being of more physiological significance was the observation that the association of SNX1 with an early endosomal compartment was dependent on a 3-phosphoinositide-binding PX domain and the presence of PtdIns(3)P on this compartment. Finally, we somal association of SNX1 is important for its ability to regulate the targeting of internalized epidermal growth factor receptor for lysosomal degradation.
Resumo:
Cadherin cell-cell adhesion molecules are important determinants of morphogenesis and tissue patterning. C-cadherin plays a key role in the cell-upon-cell movements seen during Xenopus gastrulation. In particular, regulated changes in C-cadherin adhesion critically influence convergence-extension movements, thereby determining organization of the body plan. It is also predicted that remodelling of cadherin adhesive contacts is important for such cell-on-cell movements to occur. The recent demonstration that Epithelial (E-) cadherin is capable of undergoing endocytic trafficking to and from the cell surface presents a potential mechanism for rapid remodelling of such adhesive contacts. To test the potential role for C-cadherin endocytosis during convergence-extension, we expressed in early Xenopus embryos a dominantly-inhibitory mutant of the GTPase, dynamin, a key regulator of clathrin-mediated endocytosis. We report that this dynamin mutant significantly blocked the elongation of animal cap explants in response to activin, accompanied by inhibition of C-cadherin endocytosis. We propose that dynamin-dependent endocytosis of C-cadherin plays an important role in remodelling adhesive contacts during convergence-extension movements in the early Xenopus embryo.
Resumo:
Objectives: To compare variability of blood glucose concentration in patients with type II diabetes with (cases) and without (controls) myocardial infarction. A secondary objective was identification of predictive factors for higher blood glucose on discharge from hospital. Design: A retrospective matched case-control study. Participants: Medical notes of 101 type II diabetic patients admitted with a myocardial infarction (MI) and 101 type II diabetic patients (controls) matched on gender and age with no MI were reviewed. Blood glucose concentrations over two consecutive 48-h periods were collected. Demographic data and therapy on admission/discharge were also collected. Results: Patient characteristics were comparable on recruitment excluding family history of cardiovascular disease (P =0.003), dyslipidaemia (P =0.004) and previous history of MI (P =0.007). Variability of blood glucose in cases was greater over the first 48 h compared with the second 48 h (P =0.03), and greater when compared with controls over the first 48 h (P =0.01). Cases with blood glucose on discharge >8.2 mmol / L (n =45) were less likely to have a history of previous MI (P =0.04), ischaemic heart disease (P =0.03) or hypertension (P =0.02). Conclusions: Type II diabetics with an MI have higher and more variable blood glucose concentrations during the first 48 h of admission. Only cardiovascular 'high risk' patients had target blood glucose set on discharge. The desirability of all MI patients with diabetes, having standardized-glucose infusions to reduce variability of blood glucose, should be evaluated in a randomized controlled trial.
Resumo:
Respiration is altered during different stages of the sleep-wake cycle. We review the contribution of cholinergic systems to this alteration, with particular reference to the role of muscarinic acetylcholine receptors (MAchRs) during rapid eye movement (REM) sleep. Available evidence demonstrates that MAchRs have potent excitatory effects on medullary respiratory neurones and respiratory motoneurones, and are likely to contribute to changes in central chemosensitive drive to the respiratory control system. These effects are likely to be most prominent during REM sleep, when cholinergic brainstem neurones show peak activity levels. It is possible that MAchR dysfunction is involved in sleep-disordered breathing, Such as obstructive sleep apnea. (C) 2002 Elsevier Science B.V. All rights reserved.