901 resultados para INITIAL MASS FUNCTION
Resumo:
Integral membrane proteins are predicted to play key roles in the biogenesis and function of nuclear pore complexes (NPCs). Revealing how the transport apparatus is assembled will be critical for understanding the mechanism of nucleocytoplasmic transport. We observed that expression of the carboxyl-terminal 200 amino acids of the nucleoporin Nup116p had no effect on wild-type yeast cells, but it rendered the nup116 null strain inviable at all temperatures and coincidentally resulted in the formation of nuclear membrane herniations at 23°C. To identify factors related to NPC function, a genetic screen for high-copy suppressors of this lethal nup116-C phenotype was conducted. One gene (designated SNL1 for suppressor of nup116-C lethal) was identified whose expression was necessary and sufficient for rescuing growth. Snl1p has a predicted molecular mass of 18.3 kDa, a putative transmembrane domain, and limited sequence similarity to Pom152p, the only previously identified yeast NPC-associated integral membrane protein. By both indirect immunofluorescence microscopy and subcellular fractionation studies, Snl1p was localized to both the nuclear envelope and the endoplasmic reticulum. Membrane extraction and topology assays suggested that Snl1p was an integral membrane protein, with its carboxyl-terminal region exposed to the cytosol. With regard to genetic specificity, the nup116-C lethality was also suppressed by high-copy GLE2 and NIC96. Moreover, high-copy SNL1 suppressed the temperature sensitivity of gle2–1 and nic96-G3 mutant cells. The nic96-G3 allele was identified in a synthetic lethal genetic screen with a null allele of the closely related nucleoporin nup100. Gle2p physically associated with Nup116p in vitro, and the interaction required the N-terminal region of Nup116p. Therefore, genetic links between the role of Snl1p and at least three NPC-associated proteins were established. We suggest that Snl1p plays a stabilizing role in NPC structure and function.
Resumo:
Xenopus oocyte maturation requires the phosphorylation and activation of p42 mitogen-activated protein kinase (MAPK). Likewise, the dephosphorylation and inactivation of p42 MAPK are critical for the progression of fertilized eggs out of meiosis and through the first mitotic cell cycle. Whereas the kinase responsible for p42 MAPK activation is well characterized, little is known concerning the phosphatases that inactivate p42 MAPK. We designed a microinjection-based assay to examine the mechanism of p42 MAPK dephosphorylation in intact oocytes. We found that p42 MAPK inactivation is mediated by at least two distinct phosphatases, an unidentified tyrosine phosphatase and a protein phosphatase 2A–like threonine phosphatase. The rates of tyrosine and threonine dephosphorylation were high and remained constant throughout meiosis, indicating that the dramatic changes in p42 MAPK activity seen during meiosis are primarily attributable to changes in MAPK kinase activity. The overall control of p42 MAPK dephosphorylation was shared among four partially rate-determining dephosphorylation reactions, with the initial tyrosine dephosphorylation of p42 MAPK being the most critical of the four. Our findings provide biochemical and kinetic insight into the physiological mechanism of p42 MAPK inactivation.
Resumo:
The function of many of the uncharacterized open reading frames discovered by genomic sequencing can be determined at the level of expressed gene products, the proteome. However, identifying the cognate gene from minute amounts of protein has been one of the major problems in molecular biology. Using yeast as an example, we demonstrate here that mass spectrometric protein identification is a general solution to this problem given a completely sequenced genome. As a first screen, our strategy uses automated laser desorption ionization mass spectrometry of the peptide mixtures produced by in-gel tryptic digestion of a protein. Up to 90% of proteins are identified by searching sequence data bases by lists of peptide masses obtained with high accuracy. The remaining proteins are identified by partially sequencing several peptides of the unseparated mixture by nanoelectrospray tandem mass spectrometry followed by data base searching with multiple peptide sequence tags. In blind trials, the method led to unambiguous identification in all cases. In the largest individual protein identification project to date, a total of 150 gel spots—many of them at subpicomole amounts—were successfully analyzed, greatly enlarging a yeast two-dimensional gel data base. More than 32 proteins were novel and matched to previously uncharacterized open reading frames in the yeast genome. This study establishes that mass spectrometry provides the required throughput, the certainty of identification, and the general applicability to serve as the method of choice to connect genome and proteome.
Resumo:
We have generated RANK (receptor activator of NF-κB) nullizygous mice to determine the molecular genetic interactions between osteoprotegerin, osteoprotegerin ligand, and RANK during bone resorption and remodeling processes. RANK−/− mice lack osteoclasts and have a profound defect in bone resorption and remodeling and in the development of the cartilaginous growth plates of endochondral bone. The osteopetrosis observed in these mice can be reversed by transplantation of bone marrow from rag1−/− (recombinase activating gene 1) mice, indicating that RANK−/− mice have an intrinsic defect in osteoclast function. Calciotropic hormones and proresorptive cytokines that are known to induce bone resorption in mice and human were administered to RANK−/− mice without inducing hypercalcemia, although tumor necrosis factor α treatment leads to the rare appearance of osteoclast-like cells near the site of injection. Osteoclastogenesis can be initiated in RANK−/− mice by transfer of the RANK cDNA back into hematopoietic precursors, suggesting a means to critically evaluate RANK structural features required for bone resorption. Together these data indicate that RANK is the intrinsic cell surface determinant that mediates osteoprotegerin ligand effects on bone resorption and remodeling as well as the physiological and pathological effects of calciotropic hormones and proresorptive cytokines.
Resumo:
αB-crystallin, a member of the small heat shock protein family, possesses chaperone-like function. Recently, it has been shown that a missense mutation in αB-crystallin, R120G, is genetically linked to a desmin-related myopathy as well as to cataracts [Vicart, P., Caron, A., Guicheney, P., Li, A., Prevost, M.-C., Faure, A., Chateau, D., Chapon, F., Tome, F., Dupret, J.-M., et al. (1998) Nat. Genet. 20, 92–95]. By using α-lactalbumin, alcohol dehydrogenase, and insulin as target proteins, in vitro assays indicated that R120G αB-crystallin had reduced or completely lost chaperone-like function. The addition of R120G αB-crystallin to unfolding α-lactalbumin enhanced the kinetics and extent of its aggregation. R120G αB-crystallin became entangled with unfolding α-lactalbumin and was a major portion of the resulting insoluble pellet. Similarly, incubation of R120G αB-crystallin with alcohol dehydrogenase and insulin also resulted in the presence of R120G αB-crystallin in the insoluble pellets. Far and near UV CD indicate that R120G αB-crystallin has decreased β-sheet secondary structure and an altered aromatic residue environment compared with wild-type αB-crystallin. The apparent molecular mass of R120G αB-crystallin, as determined by gel filtration chromatography, is 1.4 MDa, which is more than twice the molecular mass of wild-type αB-crystallin (650 kDa). Images obtained from cryoelectron microscopy indicate that R120G αB-crystallin possesses an irregular quaternary structure with an absence of a clear central cavity. The results of this study show, through biochemical analysis, that an altered structure and defective chaperone-like function of αB-crystallin are associated with a point mutation that leads to a desmin-related myopathy and cataracts.
Resumo:
During the aging process, mammals lose up to a third of their skeletal muscle mass and strength. Although the mechanisms underlying this loss are not entirely understood, we attempted to moderate the loss by increasing the regenerative capacity of muscle. This involved the injection of a recombinant adeno-associated virus directing overexpression of insulin-like growth factor I (IGF-I) in differentiated muscle fibers. We demonstrate that the IGF-I expression promotes an average increase of 15% in muscle mass and a 14% increase in strength in young adult mice, and remarkably, prevents aging-related muscle changes in old adult mice, resulting in a 27% increase in strength as compared with uninjected old muscles. Muscle mass and fiber type distributions were maintained at levels similar to those in young adults. We propose that these effects are primarily due to stimulation of muscle regeneration via the activation of satellite cells by IGF-I. This supports the hypothesis that the primary cause of aging-related impairment of muscle function is a cumulative failure to repair damage sustained during muscle utilization. Our results suggest that gene transfer of IGF-I into muscle could form the basis of a human gene therapy for preventing the loss of muscle function associated with aging and may be of benefit in diseases where the rate of damage to skeletal muscle is accelerated.
Resumo:
The larger of two diuretic hormones of the tobacco hornworm, Manduca sexta, (Mas-DH) is a peptide of 41 residues. It is one of a family of seven currently known insect diuretic hormones that are similar to the corticotropin-releasing factor–urotensin–sauvagine family of peptides. We investigated the possible inactivation of Mas-DH by incubating it in vitro with larval Malpighian tubules (Mt), the target organ of the hormone. The medium was analyzed, and degradation products were identified, using on-line microbore reversed-phase liquid chromatography coupled to electrospray ionization mass spectrometry (RPLC-ESI-MS). This sensitive technique allows identification of metabolites of Mas-DH (present at an initial level of ≈1 μM). An accurate Mr value for a metabolite is usually sufficient for unambiguous identification. Mas-DH is cleaved by Mt proteases initially at L29–R30 and R30–A31 under our assay conditions; some Mas-DH is also oxidized, apparently at M2 and M11. The proteolysis can be inhibited by 5 mM EDTA, suggesting that divalent metals are needed for peptide cleavage. The oxidation of the hormone can be inhibited by catalase or 1 mM methionine, indicating that H2O2 or related reactive oxygen species are responsible for the oxidative degradation observed. RPLC-ESI-MS is shown here to be an elegant and efficient method for studying peptide hormone metabolism resulting from unknown proteases and pathways.
Resumo:
Transcription factors control eukaryotic polymerase II function by influencing the recruitment of multiprotein complexes to promoters and their subsequent integrated function. The complexity of the functional ‘transcriptosome’ has necessitated biochemical fractionation and subsequent protein sequencing on a grand scale to identify individual components. As a consequence, much is now known of the basal transcription complex. In contrast, less is known about the complexes formed at distal promoter elements. The c-fos SRE, for example, is known to bind Serum Response Factor (SRF) and ternary complex factors such as Elk-1. Their interaction with other factors at the SRE is implied but, to date, none have been identified. Here we describe the use of mass-spectrometric sequencing to identify six proteins, SRF, Elk-1 and four novel proteins, captured on SRE duplexes linked to magnetic beads. This approach is generally applicable to the characterisation of nucleic acid-bound protein complexes and the post-translational modification of their components.
Resumo:
Recent improvements of a hierarchical ab initio or de novo approach for predicting both α and β structures of proteins are described. The united-residue energy function used in this procedure includes multibody interactions from a cumulant expansion of the free energy of polypeptide chains, with their relative weights determined by Z-score optimization. The critical initial stage of the hierarchical procedure involves a search of conformational space by the conformational space annealing (CSA) method, followed by optimization of an all-atom model. The procedure was assessed in a recent blind test of protein structure prediction (CASP4). The resulting lowest-energy structures of the target proteins (ranging in size from 70 to 244 residues) agreed with the experimental structures in many respects. The entire experimental structure of a cyclic α-helical protein of 70 residues was predicted to within 4.3 Å α-carbon (Cα) rms deviation (rmsd) whereas, for other α-helical proteins, fragments of roughly 60 residues were predicted to within 6.0 Å Cα rmsd. Whereas β structures can now be predicted with the new procedure, the success rate for α/β- and β-proteins is lower than that for α-proteins at present. For the β portions of α/β structures, the Cα rmsd's are less than 6.0 Å for contiguous fragments of 30–40 residues; for one target, three fragments (of length 10, 23, and 28 residues, respectively) formed a compact part of the tertiary structure with a Cα rmsd less than 6.0 Å. Overall, these results constitute an important step toward the ab initio prediction of protein structure solely from the amino acid sequence.
Resumo:
Mass extinctions have played many evolutionary roles, involving differential survivorship or selectivity of taxa and traits, the disruption or preservation of evolutionary trends and ecosystem organization, and the promotion of taxonomic and morphological diversifications—often along unexpected trajectories—after the destruction or marginalization of once-dominant clades. The fossil record suggests that survivorship during mass extinctions is not strictly random, but it often fails to coincide with factors promoting survival during times of low extinction intensity. Although of very serious concern, present-day extinctions have not yet achieved the intensities seen in the Big Five mass extinctions of the geologic past, which each removed ≥50% of the subset of relatively abundant marine invertebrate genera. The best comparisons for predictive purposes therefore will involve factors such as differential extinction intensities among regions, clades, and functional groups, rules governing postextinction biotic interchanges and evolutionary dynamics, and analyses of the factors that cause taxa and evolutionary trends to continue unabated, to suffer setbacks but resume along the same trajectory, to survive only to fall into a marginal role or disappear (“dead clade walking”), or to undergo a burst of diversification. These issues need to be addressed in a spatially explicit framework, because the fossil record suggests regional differences in postextinction diversification dynamics and biotic interchanges. Postextinction diversifications lag far behind the initial taxonomic and morphological impoverishment and homogenization; they do not simply reoccupy vacated adaptive peaks, but explore opportunities as opened and constrained by intrinsic biotic factors and the ecological and evolutionary context of the radiation.
Resumo:
Although mass extinctions probably account for the disappearance of less than 5% of all extinct species, the evolutionary opportunities they have created have had a disproportionate effect on the history of life. Theoretical considerations and simulations have suggested that the empty niches created by a mass extinction should refill rapidly after extinction ameliorates. Under logistic models, this biotic rebound should be exponential, slowing as the environmental carrying capacity is approached. Empirical studies reveal a more complex dynamic, including positive feedback and an exponential growth phase during recoveries. Far from a model of refilling ecospace, mass extinctions appear to cause a collapse of ecospace, which must be rebuilt during recovery. Other generalities include the absence of a clear correlation between the magnitude of extinction and the pace of recovery or the resulting ecological and evolutionary disruption the presence of a survival interval, with few originations, immediately after an extinction and preceding the recovery phase, and the presence of many lineages that persist through an extinction event only to disappear during the subsequent recovery. Several recoveries include numerous missing lineages, groups that are found before the extinction, then latter in the recovery, but are missing during the initial survival–recovery phase. The limited biogeographic studies of recoveries suggest considerable variability between regions.
Resumo:
Biochemistry and genetics are both required to elucidate the function of macromolecules. There is no question that metallothioneins (MTs) have unique biochemical properties, but genetic experiments have not substantiated the importance of MTs under physiological conditions. Even after thousands of studies describing the structure, biochemical characteristics, tissue distribution, induction, and consequences of genetic disruption and deliberate overexpression, the evolutionary forces that led to the initial appearance, gene duplications, and nearly ubiquitous expression of MTs remain enigmatic.
Resumo:
Biological membranes contain an extraordinary diversity of lipids. Phospholipids function as major structural elements of cellular membranes, and analysis of changes in the highly heterogeneous mixtures of lipids found in eukaryotic cells is central to understanding the complex functions in which lipids participate. Phospholipase-catalyzed hydrolysis of phospholipids often follows cell surface receptor activation. Recently, we demonstrated that granule fusion is initiated by addition of exogenous, nonmammalian phospholipases to permeabilized mast cells. To pursue this finding, we use positive and negative mode Fourier-transform ion cyclotron resonance mass spectrometry (FTICR-MS) to measure changes in the glycerophospholipid composition of total lipid extracts of intact and permeabilized RBL-2H3 (mucosal mast cell line) cells. The low energy of the electrospray ionization results in efficient production of molecular ions of phospholipids uncomplicated by further fragmentation, and changes were observed that eluded conventional detection methods. From these analyses we have spectrally resolved more than 130 glycerophospholipids and determined changes initiated by introduction of exogenous phospholipase C, phospholipase D, or phospholipase A2. These exogenous phospholipases have a preference for phosphatidylcholine with long polyunsaturated alkyl chains as substrates and, when added to permeabilized mast cells, produce multiple species of mono- and polyunsaturated diacylglycerols, phosphatidic acids, and lysophosphatidylcholines, respectively. The patterns of changes of these lipids provide an extraordinarily rich source of data for evaluating the effects of specific lipid species generated during cellular processes, such as exocytosis.
Resumo:
The plant vacuole is acidified by a complex multimeric enzyme, the vacuole-type H+-ATPase (V-ATPase). The initial association of ATPase subunits on membranes was studied using an in vitro assembly assay. The V-ATPase assembled onto microsomes when V-ATPase subunits were supplied. However, when the A or B subunit or the proteolipid were supplied individually, only the proteolipid associated with membranes. By using poly(A+) RNA depleted in the B subunit and proteolipid subunit mRNA, we demonstrated A subunit association with membranes at substoichiometric amounts of the B subunit or the 16-kD proteolipid. These data suggest that poly(A+) RNA-encoded proteins are required to catalyze the A subunit membrane assembly. Initial events were further studied by in vivo protein labeling. Consistent with a temporal ordering of V-ATPase assembly, membranes contained only the A subunit at early times; at later times both the A and B subunits were found on the membranes. A large-mass ATPase complex was not efficiently formed in the absence of membranes. Together, these data support a model whereby the A subunit is first assembled onto the membrane, followed by the B subunit.
Resumo:
Stable mammalian cell lines harboring a synthetic bovine opsin gene have been derived from the suspension-adapted HEK293 cell line. The opsin gene is under the control of the immediate-early cytomegalovirus promoter/enhancer in an expression vector that also contains a selectable marker (Neo) governed by a relatively weak promoter. The cell lines expressing the opsin gene at high levels are selected by growth in the presence of high concentrations of the antibiotic geneticin. Under the conditions used for cell growth in suspension, opsin is produced at saturated culture levels of more than 2 mg/liter. After reconstitution with 11-cis-retinal, rhodopsin is purified to homogeneity in a single step by immunoaffinity column chromatography. Rhodopsin thus prepared (> 90% recovery at concentrations of up to 15 microM) is indistinguishable from rhodopsin purified from bovine rod outer segments by the following criteria: (i) UV/Vis absorption spectra in the dark and after photobleaching and the rate of metarhodopsin II decay, (ii) initial rates of transducin activation, and (iii) the rate of phosphorylation by rhodopsin kinase. Although mammalian cell opsin migrates slower than rod outer segment opsin on SDS/polyacrylamide gels, presumably due to a different N-glycosylation pattern, their mobilities after deglycosylation are identical. This method has enabled the preparation of several site-specific mutants of bovine opsin in comparable amounts.