893 resultados para IMMORTAL POLYMERIZATION


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main focus of the present study was to develop ideal low band gap D-A copolymers for photoconducting and non-linear optical applications. This chapter summarizes the overall research work done. Designed copolymers were synthesized via direct arylation or Suzuki coupling reactions. Copolymers were characterized by theoretical and experimental methods. The suitability of these copolymers in photoconducting and optical limiting devices has been investigated.The results suggest that the copolymers investigated in the present study have a good non-linear optical response and are comparable to or even better than the D-A copolymers reported in the literature and hence could be chosen as ideal candidates with potential applications for non-linear optics. The results also show that the structures of the polymers have great impact on NLO properties. Copolymers studied here exhibits good optical limiting property at 532 nm wavelength due to two-photon absorption (TPA) process. The results revealed that the two copolymers, (P(EDOT-BTSe) and P(PH-TZ)) exhibited strong two-photon absorption and superior optical power limiting properties, which are much better than that of others.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The research in the area of geopolymer is gaining momentum during the past 20 years. Studies confirm that geopolymer concrete has good compressive strength, tensile strength, flexural strength, modulus of elasticity and durability. These properties are comparable with OPC concrete.There are many occasions where concrete is exposed to elevated temperatures like fire exposure from thermal processor, exposure from furnaces, nuclear exposure, etc.. In such cases, understanding of the behaviour of concrete and structural members exposed to elevated temperatures is vital. Even though many research reports are available about the behaviour of OPC concrete at elevated temperatures, there is limited information available about the behaviour of geopolymer concrete after exposure to elevated temperatures. A preliminary study was carried out for the selection of a mix proportion. The important variable considered in the present study include alkali/fly ash ratio, percentage of total aggregate content, fine aggregate to total aggregate ratio, molarity of sodium hydroxide, sodium silicate to sodium hydroxide ratio, curing temperature and curing period. Influence of different variables on engineering properties of geopolymer concrete was investigated. The study on interface shear strength of reinforced and unreinforced geopolymer concrete as well as OPC concrete was also carried out. Engineering properties of fly ash based geopolymer concrete after exposure to elevated temperatures (ambient to 800 °C) were studied and the corresponding results were compared with those of conventional concrete. Scanning Electron Microscope analysis, Fourier Transform Infrared analysis, X-ray powder Diffractometer analysis and Thermogravimetric analysis of geopolymer mortar or paste at ambient temperature and after exposure to elevated temperature were also carried out in the present research work. Experimental study was conducted on geopolymer concrete beams after exposure to elevated temperatures (ambient to 800 °C). Load deflection characteristics, ductility and moment-curvature behaviour of the geopolymer concrete beams after exposure to elevated temperatures were investigated. Based on the present study, major conclusions derived could be summarized as follows. There is a definite proportion for various ingredients to achieve maximum strength properties. Geopolymer concrete with total aggregate content of 70% by volume, ratio of fine aggregate to total aggregate of 0.35, NaOH molarity 10, Na2SiO3/NaOH ratio of 2.5 and alkali to fly ash ratio of 0.55 gave maximum compressive strength in the present study. An early strength development in geopolymer concrete could be achieved by the proper selection of curing temperature and the period of curing. With 24 hours of curing at 100 °C, 96.4% of the 28th day cube compressive strength could be achieved in 7 days in the present study. The interface shear strength of geopolymer concrete is lower to that of OPC concrete. Compared to OPC concrete, a reduction in the interface shear strength by 33% and 29% was observed for unreinforced and reinforced geopolymer specimens respectively. The interface shear strength of geopolymer concrete is lower than ordinary Portland cement concrete. The interface shear strength of geopolymer concrete can be approximately estimated as 50% of the value obtained based on the available equations for the calculation of interface shear strength of ordinary portland cement concrete (method used in Mattock and ACI). Fly ash based geopolymer concrete undergoes a high rate of strength loss (compressive strength, tensile strength and modulus of elasticity) during its early heating period (up to 200 °C) compared to OPC concrete. At a temperature exposure beyond 600 °C, the unreacted crystalline materials in geopolymer concrete get transformed into amorphous state and undergo polymerization. As a result, there is no further strength loss (compressive strength, tensile strength and modulus of elasticity) in geopolymer concrete, whereas, OPC concrete continues to lose its strength properties at a faster rate beyond a temperature exposure of 600 °C. At present no equation is available to predict the strength properties of geopolymer concrete after exposure to elevated temperatures. Based on the study carried out, new equations have been proposed to predict the residual strengths (cube compressive strength, split tensile strength and modulus of elasticity) of geopolymer concrete after exposure to elevated temperatures (upto 800 °C). These equations could be used for material modelling until better refined equations are available. Compared to OPC concrete, geopolymer concrete shows better resistance against surface cracking when exposed to elevated temperatures. In the present study, while OPC concrete started developing cracks at 400 °C, geopolymer concrete did not show any visible cracks up to 600 °C and developed only minor cracks at an exposure temperatureof 800 °C. Geopolymer concrete beams develop crack at an early load stages if they are exposed to elevated temperatures. Even though the material strength of the geopolymer concrete does not decrease beyond 600 °C, the flexural strength of corresponding beam reduces rapidly after 600 °C temperature exposure, primarily due to the rapid loss of the strength of steel. With increase in temperature, the curvature at yield point of geopolymer concrete beam increases and thereby the ductility reduces. In the present study, compared to the ductility at ambient temperature, the ductility of geopolymer concrete beams reduces by 63.8% at 800 °C temperature exposure. Appropriate equations have been proposed to predict the service load crack width of geopolymer concrete beam exposed to elevated temperatures. These equations could be used to limit the service load on geopolymer concrete beams exposed to elevated temperatures (up to 800 °C) for a predefined crack width (between 0.1mm and 0.3 mm) or vice versa. The moment-curvature relationship of geopolymer concrete beams at ambient temperature is similar to that of RCC beams and this could be predicted using strain compatibility approach Once exposed to an elevated temperature, the strain compatibility approach underestimates the curvature of geopolymer concrete beams between the first cracking and yielding point.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The progress in microsystem technology or nano technology places extended requirements to the fabrication processes. The trend is moving towards structuring within the nanometer scale on the one hand, and towards fabrication of structures with high aspect ratio (ratio of vertical vs. lateral dimensions) and large depths in the 100 µm scale on the other hand. Current procedures for the microstructuring of silicon are wet chemical etching and dry or plasma etching. A modern plasma etching technique for the structuring of silicon is the so-called "gas chopping" etching technique (also called "time-multiplexed etching"). In this etching technique, passivation cycles, which prevent lateral underetching of sidewalls, and etching cycles, which etch preferably in the vertical direction because of the sidewall passivation, are constantly alternated during the complete etching process. To do this, a CHF3/CH4 plasma, which generates CF monomeres is employed during the passivation cycle, and a SF6/Ar, which generates fluorine radicals and ions plasma is employed during the etching cycle. Depending on the requirements on the etched profile, the durations of the individual passivation and etching cycles are in the range of a few seconds up to several minutes. The profiles achieved with this etching process crucially depend on the flow of reactants, i.e. CF monomeres during the passivation cycle, and ions and fluorine radicals during the etching cycle, to the bottom of the profile, especially for profiles with high aspect ratio. With regard to the predictability of the etching processes, knowledge of the fundamental effects taking place during a gas chopping etching process, and their impact onto the resulting profile is required. For this purpose in the context of this work, a model for the description of the profile evolution of such etching processes is proposed, which considers the reactions (etching or deposition) at the sample surface on a phenomenological basis. Furthermore, the reactant transport inside the etching trench is modelled, based on angular distribution functions and on absorption probabilities at the sidewalls and bottom of the trench. A comparison of the simulated profiles with corresponding experimental profiles reveals that the proposed model reproduces the experimental profiles, if the angular distribution functions and absorption probabilities employed in the model is in agreement with data found in the literature. Therefor the model developed in the context of this work is an adequate description of the effects taking place during a gas chopping plasma etching process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biotinylated and non-biotinylated copolymers of ethylene oxide (EO) and 2-(diethylamino)ethyl methacrylate (DEAEMA) were synthesized by the atom transfer radical polymerization technique (ATRP). The chemical compositions of the copolymers as determined by NMR are represented by PEO₁₁₃PDEAEMA₇₀ and biotin-PEO₁₀₄PDEAEMA₉₃ respectively. The aggregation behavior of these polymers in aqueous solutions at different pHs and ionic strengths was studied using a combination of potentiometric titration, dynamic light scattering (DLS), static light scattering (SLS), and transmission electron microscopy (TEM). Both PEO-b-PDEAEMA and biotin-PEO-b-PDEAEMA diblock copolymers form micelles at high pH with hydrodynamic radii (Rh) of about 19 and 23 nm, respectively. At low pH, the copolymers are dispersed as unimers in solution with Rh of about 6-7 nm. However, at a physiological salt concentration (cs) of about 0.16M NaCl and a pH of 7-8, the copolymers form large loosely packed Guassian chains, which were not present at the low cs of 0.001M NaCl. The critical micelle concentrations (CMC) and the cytotoxicity of the copolymers were investigated to determine a suitable polymer concentration range for future biological applications. Both PEO-b-PDEAEMA and biotin-PEO-b-PDEAEMA diblock copolymers possess identical CMC values of about 0.0023 mg/g, while the cytotoxicity test indicated that the copolymers are not toxic up to 0.05mg/g (> 83% cell survival at this concentration).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Well-defined, water-soluble, pH and temperature stimuli-responsive [60]fullerene (C₆₀) containing ampholytic block copolymer of poly((methacrylic acid)-block-(2-(dimethylamino)ethyl methacrylate))-block–C₆₀ (P(MAA-b-DMAEMA)-b-C₆₀) was synthesized by the atom transfer radical polymerization (ATRP) technique. The self-assembly behaviour of the C₆₀ containing polyampholyte in aqueous solution was characterized by dynamic light scattering (DLS), and transmission electron microscopy. This amphiphilic mono-C₆₀ end-capped block copolymer shows enhanced solubility in aqueous medium at room and elevated temperatures and at low and high pH but phase-separates at intermediate pH of between 5.4 and 8.8. The self assembly of the copolymer is different from that of P(MAA-b-DMAEMA). Examination of the association behavior using DLS revealed the co-existence of unimers and aggregates at low pH at all temperatures studied, with the association being driven by the balance of hydrophobic and electrostatic interactions. Unimers and aggregates of different microstructures are also observed at high pH and at temperatures below the lower critical solution temperature (LCST) of PDMAEMA. At high pH and at temperatures above the LCST of PDMAEMA, the formation of micelles and aggregates co-existing in solution is driven by the combination of hydrophobic, electrostatic, and charge-transfer interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Amphiphilic polymers are a class of polymers that self-assemble into different types of microstructure, depending on the solvent environment and external stimuli. Self assembly structures can exist in many different forms, such as spherical micelles, rod-like micelles, bi-layers, vesicles, bi-continuous structure etc. Most biological systems are basically comprised of many of these organised structures arranged in an intelligent manner, which impart functions and life to the system. We have adopted the atom transfer radical polymerization (ATRP) technique to synthesize various types of block copolymer systems that self-assemble into different microstructure when subject to an external stimuli, such as pH or temperature. The systems that we have studied are: (1) pH responsive fullerene (C60) containing poly(methacrylic acid) (PMAA-b-C60); (2) pH and temperature responsive fullerene containing poly[2-(dimethylamino)ethyl methacrylate] (C₆₀-b-PDMAEMA); (3) other responsive water-soluble fullerene systems. By varying temperature, pH and salt concentration, different types microstructure can be produced. In the presence of inorganic salts, fractal patterns at nano- to microscopic dimension were observed for negatively charged PMAA-b-C60, while such structure was not observed for positively charged PDMAEMA-b-C60. We demonstrated that negatively charged fullerene containing polymeric systems can serve as excellent nano-templates for the controlled growth of inorganic crystals at the nano- to micrometer length scale and the possible mechanism was proposed. The physical properties and the characteristics of their self-assembly properties will be discussed, and their implications to chemical and biomedical applications will be highlighted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a systematic methodology to functionalize magnetic nanoparticles through surface-initiated atom-transfer radical polymerization (ATRP). The magnetite nanoparticles are prepared according to the method proposed by Sun et al. (2004), which leads to a monodisperse population of ~ 6 nm particles stabilized by oleic acid. The functionalization of the nanoparticles has been performed by transforming particles into macro-initiators for the ATRP, and to achieve this two different routes have been explored. The first one is the ligand-exchange method, which consists of replacing some oleic acid molecules adsorbed on the particle surface with molecules that act as an initiator for ATRP. The second method consists in using the addition reaction of bromine to the oleic acid double bond, which turns the oleic acid itself into an initiator for the ATRP. We have then grown polymer brushes of a variety of acrylic polymers on the particles, including polyisopropylacrylamide and polyacrylic acid. The nanoparticles so functionalized are water soluble and show responsive behavior: either temperature responsive behavior when polyisopropylacrylamide is grown from the surface or PH responsive in the case of polyacrylic acid. This methodology has potential applications in the control of clustering of magnetic nanoparticles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poly(acrylic acid) (PAA) was grafted onto both termini of Pluronic F87 (PEO₆₇-PPO₃₉-PEO₆₇) via atom transfer radical polymerization to produce a novel muco-adhesive block copolymer PAA₈₀-b-F₈₇-b-PAA₈₀. It was observed that PAA₈₀-F₈₇-PAA₈₀ forms stable complexes with weakly basic anti-cancer drug, Doxorubicin. Thermodynamic changes due to the drug binding to the copolymer were assessed at different pH by isothermal titration calorimetry (ITC). The formation of the polymer/drug complexes was studied by turbidimetric titration and dynamic light scattering. Doxorubicin and PAA-b-F87-b-PAA block copolymer are found to interact strongly in aqueous solution via non-covalent interactions over a wide pH range. At pH>4.35, drug binding is due to electrostatic interactions. Hydrogen-bond also plays a role in the stabilization of the PAA₈₀-F₈₇-PAA₈₀/DOX complex. At pH 7.4 (α=0.8), the size and stability of polymer/drug complex depend strongly on the doxorubicin concentration. When CDOX <0.13mM, the PAA₈₀-F₈₇-PAA₈₀ copolymer forms stable inter-chain complexes with DOX (110 ~ 150 nm). When CDOX >0.13mM, as suggested by the light scattering result, the reorganization of the polymer/drug complex is believed to occur. With further addition of DOX (CDOX >0.34mM), sharp increase in the turbidity indicates the formation of large aggregates, followed by phase separation. The onset of a sharp enthalpy increase corresponds to the formation of a stoichiometric complex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La Tesi descriu de manera completa una sèrie de complexos de ruteni amb lligands polipiridílics i lligands auxiliars de tipus fosfina, dmso, nitril o aquo. Es descriuen estudis d'isomerització (cis/trans o coordinació meridional/facial) en complexos mononuclears, a partir de tècniques espectroscòpiques. Els resultats experimentals es corroboren a partir de càlculs DFT. S'han fet també estudis d'activitat catalítica en transferència d'hidrogen per als complexos Ru-fosfina. S'han sintetitzat també complexos dinuclears de ruteni amb el lligand tetradentat Hbpp i s'ha avaluat llur activitat en la catàlisi d'oxidació d'aigua, determinant la importància de la correcta orientació relativa dels centres actius Ru=O. L'heterogeneïtzació dels complexos sobre suports conductors permet avaluar llur activitat en fase heterogènia, millorant respecte el corresponent procés en dissolució. La co-polimerització dels catalitzadors amb espècies de tipus metalocarborà, amb major dilució del catalitzador i minimització de la sobreoxidació, millora notablement els resultats, permetent diverses reutilitzacions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Els polímers són una sèrie de compostos que troben un ampli ventall d'aplicacions en la indústria actual. Un exemple són les espumes de poliuretà, estructures de tipus cel·lular obtingudes mitjançant la reacció química entre compostos de tipus isocianat i compostos de tipus poliol (polièters amb diferent nombre de grups hidroxil). És imprescindible l'ús d'additius d'estructura tensioactiva (surfactants de silicona) per estabilitzar el procés d'espumació i per proporcionar una estructura cel·lular ordenada i homogènia en mida i distribució. La síntesis i caracterització de les molècules precursores (polihidrosiloxans i polièters al·lílics), l'estudi de la reacció d'hidrosililació com a via d'obtenció dels diferents surfactants per reacció d'addició entre els polihidrosiloxans i els polièters al·lílics i la caracterització i avaluació en formulacions comercials de poliuretà dels surfactants sintetitzats han constituït els objectius del present treball. MEMÒRIA La Tesi Doctoral ha estat presentada seguint el següent esquema: CAPÍTOL I. INTRODUCCIÓ A LA QUÍMICA DEL POLIURETÀ. Es presenten els principis de la química del poliuretà, fent esment dels recents avenços en la síntesis i caracterització d'aquests compostos polimèrics, així com un apartat concret centrat en els surfactants de silicona. Es presenten les estructures habituals d'aquests compostos comercials i es detallen les reaccions de síntesi i les característiques físiques que aquests compostos proporcionen a les espumes de poliuretà. CAPÍTOL II. OBJECTIUS. 1.- Síntesis y caracterització d'una àmplia gamma de poliglicols al·lílics i de polihidrosiloxans amb grups hidrur reactius, ambdós precursors d'estructures polimèriques de tipus surfactant. 2.- Estudi de la reacció d'hidrosililació com a via de formació d'enllaços Si-C no hidrolitzables, mitjançant la reacció d'addició entre els substrats al·lílics insaturats i els polisiloxans amb grups hidrur reactius. 3.- Caracterització de les estructures polimèriques de tipus surfactant sintetitzades i avaluació d'aquestes en formulacions de poliuretà, a fi de relacionar l'estructura química d'aquests oligómers amb els efectes físics que originen en l'espuma de poliuretà. CAPÍTOL III. SÍNTESI I CARACTERITZACIÓ DE SUBSTRATS AL·LÍLICS INSATURATS DE TIPUS POLIGLICOL. S'han caracteritzat per HPLC-UV una sèrie de polietilenglicols comercials. S'ha estudiat la reacció de derivatització al·lílica sobre els grups hidroxil dels polièters comercials (PEG, PPG i copolímers PEG-PPG) i s'han caracteritzat exhaustivament els productes sintetitzats (1H,13C-RMN, GC, GC-MS, FTIR, ESI-MS, HPLC-UV). S'ha iniciat un estudi de polimerització aniònica sobre nous epòxids amb un punt de diversitat molecular, sintetitzant-se i caracteritzant-se els corresponents nous polièters obtinguts. CAPÍTOL IV. SÍNTESI I CARACTERITZACIÓ DE POLIHIDROSILOXANS REACTIUS. S'estudia la síntesis de polihidrosiloxans amb grups hidrur reactius, mitjançant la reacció de polimerització aniònica d'obertura d'anell ("AROP, anionic ring opening polimerization") i mitjançant la reacció de polimerització per equilibració catiònica. Es presenta una caracterització exhaustiva dels productes sintetitzats i es descriu la naturalesa de la microestructura polimèrica a partir de la distribució bivariant dels copolímers PDMS-co-PHMS (poli(dimetilsiloxà)-co-poli(hidrometilsiloxà)). CAPÍTOL V. ESTUDI SISTEMÀTIC DE LA REACCIÓ D'HIDROSILILACIÓ. S'ha estudiat la reacció d'hidrosililació amb la finalitat de sintetitzar estructures copolimèriques poliglicol-polisiloxà a partir de la reacció de polisiloxans hidrur reactius i polièters al·lílics. S'han provat diferents catalitzadors (Pt/C 5%, cat. de Speier i cat. de Karstedt), s'han sintetitzat diferents estructures tensoactives (lineals i ramificades) i s'ha modelitzat les diferents reaccions secundàries observades, per presentar un estudi mecanístic de la reacció d'hidrosililació aplicada a la síntesis de molècules d'elevat PM a partir de la reacció entre substrats al·lílics insaturats i polihidrosiloxans. CAPÍTOL VI. AVALUACIÓ DELS SURFACTANTS EN FORMULACIONS DE POLIURETÀ. S'ha estudiat la idoneïtat dels surfactants de silicona sintetitzats en diferents formulacions de poliuretà comercials. S'ha relacionat el comportament físic d'aquests surfactants en les espumes de poliuretà amb la seva estructura química a partir de l'anàlisi per microscòpia electrònica de rastreig. CAPÍTOL VII. CONCLUSIONS. S'han esposat les conclusions extretes de cada capítol.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Foams are cellular structures, produced by gas bubbles formed during the polyurethane polymerization mixture. Flexible PU foams meet the following two criteria: have a limited resistance to an applied load, being both permeable to air and reversibly deformable. There are two main types of flexible foams, hot and cold cure foams differing in composition and processing temperatures. The hot cure foams are widely applied and represent the main composition of actual foams, while cold cure foams present several processing and property advantages, e.g, faster demoulding time, better humid aging properties and more versatility, as hardness variation with index changes are greater than with hot cure foams. The processing of cold cure foams also is attractive due to the low energy consumption (mould temperature from 30 degrees to 65 degrees C) comparatively to hot cure foams (mould temperature from 30 degrees to 250 degrees C). Another advantage is the high variety of soft materials for low temperature processing moulds. Cold cure foams are diphenylmethane diisocyanate (MDI) based while hot cure foams are toluene diisocyanate (TDI) based. This study is concerned with Viscoelastic flexible foams MDI based for medical applications. Differential Scanning Calorimetry (DSC) was used to characterize the cure kinetics and Dynamical Mechanical Analisys to collect mechanical data. The data obtained from these two experimental procedures were analyzed and associated to establish processing/properties/operation conditions relationships. These maps for the selection of optimized processing/properties/operation conditions are important to achieve better final part properties at lower costs and lead times.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Push-pull nonlinear optical (NLO) chromophores containing thiazole and benzothiazole acceptors were synthesized and characterized. Using these chromophores a series of second-order NLO polyimides were Successfully prepared from 4,4'-(hexafluoroisopropylidene) diphthalic anhydride (6FDA), pyromellitic dianhydride (PMDA) and 3,3'4,4'-benzophenone tetracarboxylic dianhydride (BTDA) by a standard condensation polymerization technique. These polyimides exhibit high glass transition temperatures ranging from 160 to 188 degrees C. UV-vis spectrum of polyimide exhibited a slight blue shift and decreases in absorption due to birefringence. From the order parameters, it was found that chromophores were aligned effectively. Using in situ poling and temperature ramping technique, the optical temperatures for corona poling were obtained. It was found that the optimal temperatures of polyimides approach their glass transition temperatures. These polyimides demonstrate relatively large d(33) values range between 35.15 and 45.20 pm/V at 532 nm. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CCR5 is a G protein-coupled receptor that binds several natural chemokines but it is also a coreceptor for the entry of M tropic strains of HIV-1 into cells. Levels of CCR5 on the cell surface are important for the rate of HIV-1 infection and are determined by a number of factors including the rates of CCR5 internalization and recycling. Here we investigated the involvement of the actin cytoskeleton in the control of ligand-induced internalization and recycling of CCR5. Cytochalasin D, an actin depolymerizing agent, inhibited chemokine-induced internalization of CCR5 and recycling of the receptor in stably transfected CHO cells and in the monocytic cell line, THP-1. CCR5 internalization and recycling were inhibited by Toxin B and C-3 exoenzyme treatment in CHO and THP-1 cells, confirming activation of members of the RhoGTPase family by CCR5. The specific Rho kinase inhibitor Y27632, however, had no effect on CCR5 internalization or recycling. Ligand-induced activation of CCR5 leads to Rho kinase-dependent formation of focal adhesion complexes. These data indicate that CCR5 internalization and recycling are regulated by actin polymerization and activation of small G proteins in a Rho-dependent manner.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Homopolymerization of alkylarylcarbenes derived from diazirine monomers that featured benzyl alcohol or phenol residues was found to lead to the production of soluble hyperbranched poly(aryl ether)s. The polymerization process was influenced by the solvents employed, monomer concentration, and the reaction time. An increase in the monomer concentration and reaction time was found to lead to an increase in the molecular weight characteristics of the resulting polymers as determined by gel permeation chromatography (GPC). The composition and architecture of the polyethers were determined by nuclear magnetic resonance (NMR) spectroscopic analysis and were found to be highly complex and dependent on the structure of the monomers used. All of the polymers were found to contain ether linkages formed via carbene insertion into O-H bonds, although polymers derived from phenolic carbenes also contained linkages arising from C-alkylation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the condensation of calf thymus DNA by amphiphilic polystyrene(m)-b-poly(l-lysine)(n) block copolymers (PSm-b- PLys(n), m, n = degree of polymerization), using small-angle X-ray scattering, polarized optical microscopy and laser scanning confocal microscopy. Microscopy studies showed that the DNA condenses in the form of fibrillar precipitates, with an irregular structure, due to electrostatic interactions between PLys and DNA. This is not modified by the presence of hydrophobic PS block. Scattering experiments show that the structure of the polyplexes corresponds to a local order of DNA rods which becomes more compact upon increasing n. It can be concluded that for DNA/ PSm-b- PLys(n) polyplexes, the balance between the PLys block length and the excess charge in the system plays an essential role in the formation of a liquid crystalline phase.