927 resultados para IMAGE PROCESSING COMPUTER-ASSISTED
Resumo:
Purpose Accurate three-dimensional (3D) models of lumbar vertebrae can enable image-based 3D kinematic analysis. The common approach to derive 3D models is by direct segmentation of CT or MRI datasets. However, these have the disadvantages that they are expensive, timeconsuming and/or induce high-radiation doses to the patient. In this study, we present a technique to automatically reconstruct a scaled 3D lumbar vertebral model from a single two-dimensional (2D) lateral fluoroscopic image. Methods Our technique is based on a hybrid 2D/3D deformable registration strategy combining a landmark-to-ray registration with a statistical shape model-based 2D/3D reconstruction scheme. Fig. 1 shows different stages of the reconstruction process. Four cadaveric lumbar spine segments (total twelve lumbar vertebrae) were used to validate the technique. To evaluate the reconstruction accuracy, the surface models reconstructed from the lateral fluoroscopic images were compared to the associated ground truth data derived from a 3D CT-scan reconstruction technique. For each case, a surface-based matching was first used to recover the scale and the rigid transformation between the reconstructed surface model Results Our technique could successfully reconstruct 3D surface models of all twelve vertebrae. After recovering the scale and the rigid transformation between the reconstructed surface models and the ground truth models, the average error of the 2D/3D surface model reconstruction over the twelve lumbar vertebrae was found to be 1.0 mm. The errors of reconstructing surface models of all twelve vertebrae are shown in Fig. 2. It was found that the mean errors of the reconstructed surface models in comparison to their associated ground truths after iterative scaled rigid registrations ranged from 0.7 mm to 1.3 mm and the rootmean squared (RMS) errors ranged from 1.0 mm to 1.7 mm. The average mean reconstruction error was found to be 1.0 mm. Conclusion An accurate, scaled 3D reconstruction of the lumbar vertebra can be obtained from a single lateral fluoroscopic image using a statistical shape model based 2D/3D reconstruction technique. Future work will focus on applying the reconstructed model for 3D kinematic analysis of lumbar vertebrae, an extension of our previously-reported imagebased kinematic analysis. The developed method also has potential applications in surgical planning and navigation.
Resumo:
Non-linear image registration is an important tool in many areas of image analysis. For instance, in morphometric studies of a population of brains, free-form deformations between images are analyzed to describe the structural anatomical variability. Such a simple deformation model is justified by the absence of an easy expressible prior about the shape changes. Applying the same algorithms used in brain imaging to orthopedic images might not be optimal due to the difference in the underlying prior on the inter-subject deformations. In particular, using an un-informed deformation prior often leads to local minima far from the expected solution. To improve robustness and promote anatomically meaningful deformations, we propose a locally affine and geometry-aware registration algorithm that automatically adapts to the data. We build upon the log-domain demons algorithm and introduce a new type of OBBTree-based regularization in the registration with a natural multiscale structure. The regularization model is composed of a hierarchy of locally affine transformations via their logarithms. Experiments on mandibles show improved accuracy and robustness when used to initialize the demons, and even similar performance by direct comparison to the demons, with a significantly lower degree of freedom. This closes the gap between polyaffine and non-rigid registration and opens new ways to statistically analyze the registration results.
Resumo:
Presenting visual feedback for image-guided surgery on a monitor requires the surgeon to perform time-consuming comparisons and diversion of sight and attention away from the patient. Deficiencies in previously developed augmented reality systems for image-guided surgery have, however, prevented the general acceptance of any one technique as a viable alternative to monitor displays. This work presents an evaluation of the feasibility and versatility of a novel augmented reality approach for the visualisation of surgical planning and navigation data. The approach, which utilises a portable image overlay device, was evaluated during integration into existing surgical navigation systems and during application within simulated navigated surgery scenarios.
Resumo:
PURPOSE : For the facilitation of minimally invasive robotically performed direct cochlea access (DCA) procedure, a surgical planning tool which enables the surgeon to define landmarks for patient-to-image registration, identify the necessary anatomical structures and define a safe DCA trajectory using patient image data (typically computed tomography (CT) or cone beam CT) is required. To this end, a dedicated end-to-end software planning system for the planning of DCA procedures that addresses current deficiencies has been developed. METHODS : Efficient and robust anatomical segmentation is achieved through the implementation of semiautomatic algorithms; high-accuracy patient-to-image registration is achieved via an automated model-based fiducial detection algorithm and functionality for the interactive definition of a safe drilling trajectory based on case-specific drill positioning uncertainty calculations was developed. RESULTS : The accuracy and safety of the presented software tool were validated during the conduction of eight DCA procedures performed on cadaver heads. The plan for each ear was completed in less than 20 min, and no damage to vital structures occurred during the procedures. The integrated fiducial detection functionality enabled final positioning accuracies of [Formula: see text] mm. CONCLUSIONS : Results of this study demonstrated that the proposed software system could aid in the safe planning of a DCA tunnel within an acceptable time.
Resumo:
Limitations associated with the visual information provided to surgeons during laparoscopic surgery increases the difficulty of procedures and thus, reduces clinical indications and increases training time. This work presents a novel augmented reality visualization approach that aims to improve visual data supplied for the targeting of non visible anatomical structures in laparoscopic visceral surgery. The approach aims to facilitate the localisation of hidden structures with minimal damage to surrounding structures and with minimal training requirements. The proposed augmented reality visualization approach incorporates endoscopic images overlaid with virtual 3D models of underlying critical structures in addition to targeting and depth information pertaining to targeted structures. Image overlay was achieved through the implementation of camera calibration techniques and integration of the optically tracked endoscope into an existing image guidance system for liver surgery. The approach was validated in accuracy, clinical integration and targeting experiments. Accuracy of the overlay was found to have a mean value of 3.5 mm ± 1.9 mm and 92.7% of targets within a liver phantom were successfully located laparoscopically by non trained subjects using the approach.
Resumo:
Objectives: In alveolar distraction, in cases of severe atrophy in particular, it is often difficult to perform osteotomies in order to make a transport segment in optimal size and shape. Moreover care must be taken, not to damage the closely locating anato- mical structures such as the maxillary sinus, the inferior alveolar nerve, and the roots of the neighboring teeth. For setting ideal osteotomy lines exactly, we have developed a CT-based preoperative planning tool. Methods: 3-dimensional visual reconstruction of the jaw is created from the preoperative CT scans (1.0-mm slice thick- ness). Using the image-processing software Mimics (Materialise, Yokohama, Japan), various procedures of virtual cutting are simulated first to determine optimal osteotomy lines and to design an ideal transport segment. After the computer planning, data from the virtual solid model are transferred to a rapid prototype model, and a guiding splint is made to transfer the planned surgical simulation to the actual surgery. Results: The method was used in a case of severe atrophy of the anterior maxilla. The patient had a large maxillary sinus requir- ing a precise osteotomy in this critical area. Using the splint allowing a 3-dimensional guidance, alveolar osteotomies were easily done to achieve a transport segment in sufficient dimen- sion as planned, and any perforation of the maxillary sinus could be avoided. Finally the alveolar distraction of 10mm has suc- cessfully been performed. Conclusion: The preoperative planning method and the guiding splint described here are useful in problematic cases requiring an extremely precise osteotomy due to lack of bony space.
Resumo:
All optical systems that operate in or through the atmosphere suffer from turbulence induced image blur. Both military and civilian surveillance, gun-sighting, and target identification systems are interested in terrestrial imaging over very long horizontal paths, but atmospheric turbulence can blur the resulting images beyond usefulness. My dissertation explores the performance of a multi-frame-blind-deconvolution technique applied under anisoplanatic conditions for both Gaussian and Poisson noise model assumptions. The technique is evaluated for use in reconstructing images of scenes corrupted by turbulence in long horizontal-path imaging scenarios and compared to other speckle imaging techniques. Performance is evaluated via the reconstruction of a common object from three sets of simulated turbulence degraded imagery representing low, moderate and severe turbulence conditions. Each set consisted of 1000 simulated, turbulence degraded images. The MSE performance of the estimator is evaluated as a function of the number of images, and the number of Zernike polynomial terms used to characterize the point spread function. I will compare the mean-square-error (MSE) performance of speckle imaging methods and a maximum-likelihood, multi-frame blind deconvolution (MFBD) method applied to long-path horizontal imaging scenarios. Both methods are used to reconstruct a scene from simulated imagery featuring anisoplanatic turbulence induced aberrations. This comparison is performed over three sets of 1000 simulated images each for low, moderate and severe turbulence-induced image degradation. The comparison shows that speckle-imaging techniques reduce the MSE 46 percent, 42 percent and 47 percent on average for low, moderate, and severe cases, respectively using 15 input frames under daytime conditions and moderate frame rates. Similarly, the MFBD method provides, 40 percent, 29 percent, and 36 percent improvements in MSE on average under the same conditions. The comparison is repeated under low light conditions (less than 100 photons per pixel) where improvements of 39 percent, 29 percent and 27 percent are available using speckle imaging methods and 25 input frames and 38 percent, 34 percent and 33 percent respectively for the MFBD method and 150 input frames. The MFBD estimator is applied to three sets of field data and the results presented. Finally, a combined Bispectrum-MFBD Hybrid estimator is proposed and investigated. This technique consistently provides a lower MSE and smaller variance in the estimate under all three simulated turbulence conditions.
Resumo:
PURPOSE: To assess the literature on accuracy and clinical performance of computer technology applications in surgical implant dentistry. MATERIALS AND METHODS: Electronic and manual literature searches were conducted to collect information about (1) the accuracy and (2) clinical performance of computer-assisted implant systems. Meta-regression analysis was performed for summarizing the accuracy studies. Failure/complication rates were analyzed using random-effects Poisson regression models to obtain summary estimates of 12-month proportions. RESULTS: Twenty-nine different image guidance systems were included. From 2,827 articles, 13 clinical and 19 accuracy studies were included in this systematic review. The meta-analysis of the accuracy (19 clinical and preclinical studies) revealed a total mean error of 0.74 mm (maximum of 4.5 mm) at the entry point in the bone and 0.85 mm at the apex (maximum of 7.1 mm). For the 5 included clinical studies (total of 506 implants) using computer-assisted implant dentistry, the mean failure rate was 3.36% (0% to 8.45%) after an observation period of at least 12 months. In 4.6% of the treated cases, intraoperative complications were reported; these included limited interocclusal distances to perform guided implant placement, limited primary implant stability, or need for additional grafting procedures. CONCLUSION: Differing levels and quantity of evidence were available for computer-assisted implant placement, revealing high implant survival rates after only 12 months of observation in different indications and a reasonable level of accuracy. However, future long-term clinical data are necessary to identify clinical indications and to justify additional radiation doses, effort, and costs associated with computer-assisted implant surgery.
Resumo:
Image denoising methods have been implemented in both spatial and transform domains. Each domain has its advantages and shortcomings, which can be complemented by each other. State-of-the-art methods like block-matching 3D filtering (BM3D) therefore combine both domains. However, implementation of such methods is not trivial. We offer a hybrid method that is surprisingly easy to implement and yet rivals BM3D in quality.
Resumo:
We propose a new method for fully-automatic landmark detection and shape segmentation in X-ray images. Our algorithm works by estimating the displacements from image patches to the (unknown) landmark positions and then integrating them via voting. The fundamental contribution is that, we jointly estimate the displacements from all patches to multiple landmarks together, by considering not only the training data but also geometric constraints on the test image. The various constraints constitute a convex objective function that can be solved efficiently. Validated on three challenging datasets, our method achieves high accuracy in landmark detection, and, combined with statistical shape model, gives a better performance in shape segmentation compared to the state-of-the-art methods.
Resumo:
Image denoising continues to be an active research topic. Although state-of-the-art denoising methods are numerically impressive and approch theoretical limits, they suffer from visible artifacts.While they produce acceptable results for natural images, human eyes are less forgiving when viewing synthetic images. At the same time, current methods are becoming more complex, making analysis, and implementation difficult. We propose image denoising as a simple physical process, which progressively reduces noise by deterministic annealing. The results of our implementation are numerically and visually excellent. We further demonstrate that our method is particularly suited for synthetic images. Finally, we offer a new perspective on image denoising using robust estimators.