833 resultados para Hypothalamy-pituitary-adrenal axis
Resumo:
The hypothalamic-pituitary system controls homeostasis during feed energy reduction. In order to examine which pituitary proteins and hormone variants are potentially associated with metabolic adaptation, pituitary glands from ad libitum and energy restrictively fed dairy cows were characterized using RIA and 2-DE followed by MALDI-TOF-MS. We found 64 different spots of regulatory hormones: growth hormone (44), preprolactin (16), luteinizing hormone (LH) (1), thyrotropin (1), proopiomelanocortin (1) and its cleavage product lipotropin (1), but none of these did significantly differ between feeding groups. Quantification of total pituitary LH and prolactin concentrations by RIA confirmed the results obtained by proteome analysis. Also, feed energy restriction provoked increasing non-esterified fatty acid, decreasing prolactin, but unaltered glucose, LH and growth hormone plasma concentrations. Energy restriction decreased the expression of glial fibrillary acidic protein, triosephosphate isomerase, purine-rich element-binding protein A and elongation factor Tu, whereas it increased expression of proline synthetase co-transcribed homolog, peroxiredoxin III, beta-tubulin and annexin A5 which is involved in the hormone secretion process. Our results indicate that in response to feed energy restriction the pituitary reservoir of all posttranslationally modified hormone forms remains constant. Changing plasma hormone concentrations are likely attributed to a regulated releasing process from the gland into the blood.
Resumo:
In selected samples, a considerable number of patients at clinical high risk of psychosis (CHR) are found to meet criteria for co-morbid clinical psychiatric disorders. It is not known how clinical diagnoses correspond to or even predict transitions to psychosis (TTP). Our aim was to examine distributions of life-time and current Axis I diagnoses, and their association with TTP in CHR patients.
Resumo:
Background: Prenatal glucocorticoid (GC) treatment of the female fetus with 21-hydroxylase deficiency (21-OHD) may prevent genital virilization and androgen effects on the brain, but prenatal GC therapy is controversial because of possible adverse effects on fetal programming, the cardiovascular system and the brain. Case Reports: We report 2 patients with congenital adrenal hyperplasia (CAH) due to 21-OHD who were treated prenatally with dexamethasone, suffered from an acute encephalopathy and showed focal and multifocal cortical and subcortical diffusion restrictions in early MRI and signs of permanent alterations in the follow-up neuroimaging studies. Both patients recovered from the acute episode. Whereas the first patient recovered without neurological sequelae the second patient showed hemianopsia and spastic hemiplegia in the neurological follow-up examination. Conclusion: These are 2 children with CAH, both treated prenatally with high doses of dexamethasone to prevent virilization. The question arises whether prenatal high-dose GC treatment in patients with CAH might represent a risk factor for brain lesions in later life. Adverse effects/events should be reported systematically in patients undergoing prenatal GC treatment and long-term follow-up studies involving risk factors for cerebrovascular disease should be performed.
Resumo:
We describe a hitherto undocumented variant of dimorphic pituitary neoplasm composed of an admixture of neurosecretory cells and profuse leiomyomatous stroma around intratumoral vessels. Radiologically perceived as a macroadenoma of 3.8 cm in diameter, this pituitary mass developed in an otherwise healthy 43-year-old female. At the term of a yearlong history of amenorrhea and progressive bitemporal visual loss, subtotal resection was performed via transsphenoidal microsurgery. Discounting mild hyperprolactinemia, there was no evidence of excess hormone production. Histologically, solid sheets, nests and cords of epithelial-looking, yet cytokeratin-negative cells were seen growing in a richly vascularized stroma of spindle cells. While strong immunoreactivity for NCAM, Synaptophysin and Chromogranin-A was detected in the former, the latter showed both morphological and immunophenotypic hallmarks of smooth muscle, being positive for vimentin, muscle actin and smooth muscle actin. Architectural patterns varied from monomorphous stroma-dominant zones through biphasic neuroendocrine-leiomyomatous areas, to pseudopapillary fronds along vascular cores. Only endothelia were labeled with CD34. Staining for S100 protein and GFAP, characteristics of sustentacular cells, as well as bcl-2 and c-kit was absent. Except for alpha-subunit, anterior pituitary hormones tested negative in tumor cells, as did a panel of peripheral endocrine markers, including serotonin, somatostatin, calcitonin, parathormone and vasoactive intestinal polypeptide. Mitotic activity was absent and the MIB-1 labeling index low (1-2%). While assignment of this lesion to any established neoplastic entity is not forthcoming, we propose it is being considered as a low-grade neuroendocrine tumor possibly related to null cell adenoma.
Resumo:
To report a rare side effect of gamma knife treatment of pituitary macroadenoma.
Resumo:
The nuclear receptor liver receptor homologue-1 (LRH-1, NR5A2) is a crucial transcriptional regulator of many metabolic pathways. In addition, LRH-1 is expressed in intestinal crypt cells where it regulates the epithelial cell renewal and contributes to tumorigenesis through the induction of cell cycle proteins. We have recently identified the intestinal epithelium as an important extra-adrenal source of immunoregulatory glucocorticoids. We show here that LRH-1 promotes the expression of the steroidogenic enzymes and the synthesis of corticosterone in murine intestinal epithelial cells in vitro. Interestingly, LRH-1 is also essential for intestinal glucocorticoid synthesis in vivo, as LRH-1 haplo-insufficiency strongly reduces the intestinal expression of steroidogenic enzymes and glucocorticoid synthesis upon immunological stress. These results demonstrate for the first time a novel role for LRH-1 in the regulation of intestinal glucocorticoid synthesis and propose LRH-1 as an important regulator of intestinal tissue integrity and immune homeostasis.
Resumo:
PURPOSE OF REVIEW: P450 oxidoreductase deficiency--a newly described form of congenital adrenal hyperplasia--typically presents a steroid profile suggesting combined deficiencies of steroid 21-hydroxylase and 17alpha-hydroxylase/17,20-lyase activities. These and other enzymes require electron donation from P450 oxidoreductase. The clinical spectrum of P450 oxidoreductase deficiency ranges from severely affected children with ambiguous genitalia, adrenal insufficiency and the Antley-Bixler skeletal malformation syndrome to mildly affected individuals with polycystic ovary syndrome. We review current knowledge of P450 oxidoreductase deficiency and its broader implications. RECENT FINDINGS: Since the first report in 2004, at least 21 P450 oxidoreductase mutations have been reported in over 40 patients. The often subtle manifestations of P450 oxidoreductase deficiency suggest it may be relatively common. P450 oxidoreductase deficiency, with or without Antley-Bixler syndrome, is autosomal recessive, whereas Antley-Bixler syndrome without disordered steroidogenesis is caused by autosomal dominant fibroblast growth factor receptor 2 mutations. In-vitro assays of P450 oxidoreductase missense mutations based on P450 oxidoreductase-supported P450c17 activities provide excellent genotype/phenotype correlations. The causal connection between P450 oxidoreductase deficiency and disordered bone formation remains unclear. SUMMARY: P450 oxidoreductase mutations cause combined partial deficiency of 17alpha-hydroxylase and 21-hydroxylase. Individuals with an Antley-Bixler syndrome-like phenotype presenting with sexual ambiguity or other abnormalities in steroidogenesis should be analyzed for P450 oxidoreductase deficiency.
Resumo:
Folliculo-stellate cells are a nonendocrine, sustentacular-like complementary population of the anterior pituitary. They currently are considered as functionally and phenotypically heterogeneous, with one subpopulation of folliculo-stellate cells possibly representing resident adenohypophyseal macrophages. We took advantage of a limited T-cell mediated inflammatory reaction selectively involving tumor tissue in three cases of pituitary adenoma (2 prolactin cell adenomas, and 1 null cell adenoma) to test the hypothesis whether some folliculo-stellate cells within inflammatory foci would also assume monocytic/dendritic properties. Immunohistochemical double labeling for S-100 protein and the class II major histocompatibility antigen HLA-DR indeed showed several arborized cells to coexpress both epitopes. These were distributed both amidst adenomatous acini and along intratumoral vessels, and were morphologically undistinguishable from conventional folliculo-stellate cells. On the other hand, markers of follicular dendritic cells (CD21) and Langerhans' cells (CD1a) tested negative. Furthermore, no S-100/HLA-DR coexpressing folliculo-stellate cells were seen in either peritumoral parenchyma of the cases in point nor in control pituitary adenomas lacking inflammatory reaction. These findings suggest that a subset of folliculo-stellate cells may be induced by an appropriate local inflammatory microenvironment to assume a dendritic cell-like immunophenotype recognizable by their coexpression of S-100 protein and HLA-DR. By analogy with HLA-DR expressing cells in well-established extrapituitary inflammatory constellations, we speculate that folliculo-stellate cells with such immunophenotype may actually perform professional antigen presentation. A distinctly uncommon finding in pituitary adenomas, lymphocytic infiltrates may therefore be read as a manifestation of tumoral immunosurveillance.
Resumo:
Growth and sexual development are closely interlinked in fish; however, no reports exist on potential effects of estrogen on the GH/IGF-I-axis in developing fish. We investigate whether estrogen exposure during early development affects growth and the IGF-I system, both at the systemic and tissue level. Tilapia were fed from 10 to 40 days post fertilization (DPF) with 17alpha-ethinylestradiol (EE(2)). At 50, 75, 90, and 165 DPF, length, weight, sex ratio, serum IGF-I (RIA), pituitary GH mRNA and IGF-I, and estrogen receptor alpha (ERalpha) mRNA in liver, gonads, brain, and gills (real-time PCR) were determined and the results correlated to those of in situ hybridization for IGF-I. Developmental exposure to EE(2) had persistent effects on sex ratio and growth. Serum IGF-I, hepatic IGF-I mRNA, and the number of IGF-I mRNA-containing hepatocytes were significantly decreased at 75 DPF, while liver ERalpha mRNA was significantly induced. At 75 DPF, a transient decline of IGF-I mRNA and a largely reduced number of IGF-I mRNA-containing neurons were observed in the female brain. In both sexes, pituitary GH mRNA was significantly suppressed. A transient downregulation of IGF-I mRNA occurred in ovaries (75 DPF) and testes (90 DPF). In agreement, in situ hybridization revealed less IGF-I mRNA signals in granulosa and germ cells. Our results show for the first time that developmental estrogen treatment impairs GH/IGF-I expression in fish, and that the effects persist. These long-lasting effects both seem to be exerted indirectly via inhibition of pituitary GH and directly by suppression of local IGF-I in organ-specific cells.
Resumo:
The human adrenal cortex produces mineralocorticoids, glucocorticoids, and androgens in a species-specific, hormonally regulated, zone-specific, and developmentally characteristic fashion. Most molecular studies of adrenal steroidogenesis use human adrenocortical NCI-H295A and NCI-H295R cells as a model because appropriate animal models do not exist. NCI-H295A and NCI-H295R cells originate from the same adrenocortical carcinoma which produced predominantly androgens but also smaller amounts of mineralocorticoids and glucocorticoids. Research data obtained from either NCI-H295A or NCI-H295R cells are generally compared, although for the same experiments no direct comparison between the two cell lines has been performed. Therefore, we compared the steroid profile and the expression pattern of important genes involved in steroidogenesis in both cell lines. We found that steroidogenesis differs profoundly. NCI-H295A cells produce more mineralocorticoids, whereas NCI-H295R cells produce more androgens. Expression of the 3beta-hydroxysteroid dehydrogenase (HSD3B2), cytochrome b5, and sulfonyltransferase genes is higher in NCI-H295A cells, whereas expression of the cytochrome P450c17 (CYP17), 21-hydroxylase (CYP21), and P450 oxidoreductase genes does not differ between the cell lines. We found lower 3beta-hydroxysteroid dehydrogenase type 2 but higher 17,20-lyase activity in NCI-H295R cells explaining the 'androgenic' steroid profile for these cells and resembling the zona reticularis of the human adrenal cortex. Both cell lines were found to express the ACTH receptor at low levels consistent with low stimulation by ACTH. By contrast, both cell lines were readily stimulated by 8Br-cAMP. The angiotensin type 1 receptor was highly expressed in NCI-H295R than NCI-H295A cells and angiotensin II stimulated steroidogenesis in NCI-H295R but not NCI-H295A cells. Our data suggest that comparative studies between NCI-H295A and NCI-H295R cells may help find important regulators of mineralocorticoid or androgen biosynthesis.
Resumo:
We report three women with hypercortisolism presenting with symptoms and signs of Cushing's syndrome. In two of the patients, initial symptoms of hypercortisolism were associated with spontaneous amelioration of previously known atopic dermatitis and psoriasis, respectively. DIAGNOSTIC PROCEDURES: Diagnosis was established by demonstrating both lack of responsiveness to dexamethasone (1mg) suppression test and increased 24-hour urine cortisol secretion. One patient had a low serum ACTH level indicating Cushing's syndrome of adrenal origin. In the other two patients hypercortisolism proved to be ACTH-dependent, the source being the pituitary, as demonstrated by CRH stimulation test (elevation of ACTH and cortisol by 35 % and 20 %, respectively) and sampling of the petrosus sinus. In both patients imaging confirmed the presence of a pituitary adenoma.
Resumo:
The GH-IGF axis has profound effects on the local and systemic regulation of bone metabolism and may be important for quality of fracture healing. To test the hypothesis that deficiency of the GH/IGF axis may play a role in the pathogenesis of fracture non-union we investigated whether alterations of serum concentrations of the GH-IGF axis could be related to failed fracture healing compared to timely fracture healing in trauma patients. Serum probes were prospectively collected from 186 patients with surgical treatment of long bone fractures up to 6 months after surgery. Samples from 14 patients with atrophic type of non-union have been compared to 14 matched patients with normal bone healing. Postoperative time courses of serum concentrations have been analyzed using commercially available chemiluminescence sandwich assays (GH), fully automated assay systems (IGF-I, IGFBP-3) or sandwich immunometric assays (ALS). Comparison between both collectives revealed significantly lower serum concentrations of GH dependent ALS during early (1st week after surgery) and of both IGFBP-3 and ALS during late stages of fracture healing (6 and 8 weeks after surgery) in non-union patients, coinciding clinically with failed fracture healing. Tendentially lower serum levels of IGF-I in the non-union group over the entire investigation period were statistically not significant. We have been able to show time courses of serum concentrations of the GH/IGF-I axis during normal and failed fracture healing in humans. An impairment of the GH/IGF-I axis might be involved in the biochemical mechanisms determining delayed or failed fracture healing.