933 resultados para Horse stable
Resumo:
The general stability theory of nonlinear receding horizon controllers has attracted much attention over the last fifteen years, and many algorithms have been proposed to ensure closed-loop stability. On the other hand many reports exist regarding the use of artificial neural network models in nonlinear receding horizon control. However, little attention has been given to the stability issue of these specific controllers. This paper addresses this problem and proposes to cast the nonlinear receding horizon control based on neural network models within the framework of an existing stabilising algorithm.
Resumo:
Carbon and nitrogen stable isotope ratios were measured in 157 fish bone collagen samples from 15 different archaeological sites in Belgium which ranged in ages from the 3rd to the 18th c. AD. Due to diagenetic contamination of the burial environment, only 63 specimens produced results with suitable C:N ratios (2.9–3.6). The selected bones encompass a wide spectrum of freshwater, brackish, and marine taxa (N = 18), and this is reflected in the δ13C results (−28.2‰ to −12.9%). The freshwater fish have δ13C values that range from −28.2‰ to −20.2‰, while the marine fish cluster between −15.4‰ and −13.0‰. Eel, a catadromous species (mostly living in freshwater but migrating into the sea to spawn), plots between −24.1‰ and −17.7‰, and the anadromous fish (living in marine environments but migrating into freshwater to spawn) show a mix of freshwater and marine isotopic signatures. The δ15N results also have a large range (7.2‰ to 16.7‰) indicating that these fish were feeding at many different trophic levels in these diverse aquatic environments. The aim of this research is the isotopic characterization of archaeological fish species (ecology, trophic level, migration patterns) and to determine intra-species variation within and between fish populations differing in time and location. Due to the previous lack of archaeological fish isotope data from Northern Europe and Belgium in particular, these results serve as an important ecological backdrop for the future isotopic reconstruction of the diet of human populations dating from the historical period (1st and 2nd millennium AD), where there is zooarchaeological and historical evidence for an increased consumption of marine fish.
Resumo:
The study of stable isotopes surviving in human bone is fast becoming a standard response in the analysis of cemeteries. Reviewing the state of the art for Roman Britain, the author shows clear indications of a change in diet (for the better) following the Romanisation of Iron Age Britain—including more seafood, and more nutritional variety in the towns. While samples from the bones report an average of diet over the years leading up to an individual's death, carbon and nitrogen isotope signatures taken from the teeth may have a biographical element—capturing those childhood dinners. In this way migrants have been detected—as in the likely presence of Africans in Roman York. While not unexpected, these results show the increasing power of stable isotopes to comment on populations subject to demographic pressures of every kind.
Resumo:
If X is a stable process of index α∈(0, 2) whose Lévy measure has density cx−α−1 on (0, ∞), and S1=sup0
Resumo:
In biological mass spectrometry (MS), two ionization techniques are predominantly employed for the analysis of larger biomolecules, such as polypeptides. These are nano-electrospray ionization [1, 2] (nanoESI) and matrix-assisted laser desorption/ionization [3, 4] (MALDI). Both techniques are considered to be “soft”, allowing the desorption and ionization of intact molecular analyte species and thus their successful mass-spectrometric analysis. One of the main differences between these two ionization techniques lies in their ability to produce multiply charged ions. MALDI typically generates singly charged peptide ions whereas nanoESI easily provides multiply charged ions, even for peptides as low as 1000 Da in mass. The production of highly charged ions is desirable as this allows the use of mass analyzers, such as ion traps (including orbitraps) and hybrid quadrupole instruments, which typically offer only a limited m/z range (< 2000–4000). It also enables more informative fragmentation spectra using techniques such as collisioninduced dissociation (CID) and electron capture/transfer dissociation (ECD/ETD) in combination with tandem MS (MS/MS). [5, 6] Thus, there is a clear advantage of using ESI in research areas where peptide sequencing, or in general, the structural elucidation of biomolecules by MS/MS is required. Nonetheless, MALDI with its higher tolerance to contaminants and additives, ease-of-operation, potential for highspeed and automated sample preparation and analysis as well as its MS imaging capabilities makes it an ionization technique that can cover bioanalytical areas for which ESI is less suitable. [7, 8] If these strengths could be combined with the analytical power of multiply charged ions, new instrumental configurations and large-scale proteomic analyses based on MALDI MS(/MS) would become feasible.
Resumo:
Recent national developments in the teaching of literacy in the early years in the UK mean that teachers need to have explicit fluent knowledge of the sound structure of the language and its relationship to orthography in order to teach reading effectively. In this study, a group of 38 graduate trainee primary teachers were given a pencil and paper test of phonological awareness as part of a course on teaching literacy. Results from the pencil and paper test were used as the basis of teaching about the sound structure of words. The test was repeated six months later. The results showed that they did not use a consistent system for segmenting words into component sounds. Though there was substantial improvement on second testing, many trainees still did not show evidence that they had yet developed sufficient insights into the sound structure of words to be able to teach children about phonemes with certainty. It is argued that student teachers need substantial explicit training and practice in manipulating the sound structure of words to enable them to teach this aspect of language confidently.
Resumo:
Atmospheric CO2 concentration is hypothesized to influence vegetation distribution via tree–grass competition, with higher CO2 concentrations favouring trees. The stable carbon isotope (δ13C) signature of vegetation is influenced by the relative importance of C4 plants (including most tropical grasses) and C3 plants (including nearly all trees), and the degree of stomatal closure – a response to aridity – in C3 plants. Compound-specific δ13C analyses of leaf-wax biomarkers in sediment cores of an offshore South Atlantic transect are used here as a record of vegetation changes in subequatorial Africa. These data suggest a large increase in C3 relative to C4 plant dominance after the Last Glacial Maximum. Using a process-based biogeography model that explicitly simulates 13C discrimination, it is shown that precipitation and temperature changes cannot explain the observed shift in δ13C values. The physiological effect of increasing CO2 concentration is decisive, altering the C3/C4 balance and bringing the simulated and observed δ13C values into line. It is concluded that CO2 concentration itself was a key agent of vegetation change in tropical southern Africa during the last glacial–interglacial transition. Two additional inferences follow. First, long-term variations in terrestrial δ13Cvalues are not simply a proxy for regional rainfall, as has sometimes been assumed. Although precipitation and temperature changes have had major effects on vegetation in many regions of the world during the period between the Last Glacial Maximum and recent times, CO2 effects must also be taken into account, especially when reconstructing changes in climate between glacial and interglacial states. Second, rising CO2 concentration today is likely to be influencing tree–grass competition in a similar way, and thus contributing to the "woody thickening" observed in savannas worldwide. This second inference points to the importance of experiments to determine how vegetation composition in savannas is likely to be influenced by the continuing rise of CO2 concentration.
Resumo:
In a proof-of-concept study, Britton et al. (2008) demonstrated that the isotopic composition of halophytic plants can be traced in the skeletal tissues of their animal consumers. Here we apply the method to domestic herbivore remains (n = 303) from nine archaeological sites in or near the Flemish coastal plain (Belgium), where, prior to embankments, salt-marshes offered extensive pasture grounds for domestic herbivores. The sites span a period of ∼1500 years (Roman to late medieval period), during which the coastal landscape was progressively transformed from little managed wetlands to a fully embanked polder area. The bulk collagen data show variations between sites and over time, which are consistent with this historical framework and are interpreted as reflecting environmental change and differences in animal management in the coastal plain throughout the late Holocene. The study demonstrates the immense value of faunal stable isotope analysis for characterising coastal husbandry strategies beyond the means of traditional zooarchaeological techniques.
Resumo:
Serial sampling and stable isotope analysis performed along the growth axis of vertebrate tooth enamel records differences attributed to seasonal variation in diet, climate or animal movement. Because several months are required to obtain mature enamel in large mammals, modifications in the isotopic composition of environmental parameters are not instantaneously recorded, and stable isotope analysis of tooth enamel returns a time-averaged signal attenuated in its amplitude relative to the input signal. For convenience, stable isotope profiles are usually determined on the side of the tooth where enamel is thickest. Here we investigate the possibility of improving the time resolution by targeting the side of the tooth where enamel is thinnest. Observation of developing third molars (M3) in sheep shows that the tooth growth rate is not constant but decreases exponentially, while the angle between the first layer of enamel deposited and the enamel–dentine junction increases as a tooth approaches its maximal length. We also noted differences in thickness and geometry of enamel growth between the mesial side (i.e., the side facing the M2) and the buccal side (i.e., the side facing the cheek) of the M3. Carbon and oxygen isotope variations were measured along the M3 teeth from eight sheep raised under controlled conditions. Intra-tooth variability was systematically larger along the mesial side and the difference in amplitude between the two sides was proportional to the time of exposure to the input signal. Although attenuated, the mesial side records variations in the environmental signal more faithfully than the buccal side. This approach can be adapted to other mammals whose teeth show lateral variation in enamel thickness and could potentially be used as an internal check for diagenesis.
Resumo:
Reconstructing past water availability, both as rainfall and irrigation, is important to answer questions about the way society reacts to climate and its changes and the role of irrigation in the development of social complexity. Carbon stable isotope analysis of archaeobotanical remains is a potentially valuable method for reconstructing water availability. To further define the relationship between water availability and plant carbon isotope composition and to set up baseline values for the Southern Levant, grains of experimentally grown barley and sorghum were studied. The cereal crops were grown at three stations under five different irrigation regimes in Jordan. Results indicate that a positive but weak relationship exists between irrigation regime and total water input of barley grains, but no relationship was found for sorghum. The relationship for barley is site-specific and inter-annual variation was present at Deir ‘Alla, but not at Ramtha and Khirbet as-Samra.