917 resultados para High dynamic vehicles


Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: Upper airway measurement can be important for the diagnosis of breathing disorders. Acoustic reflection (AR) is an accepted tool for studying the airway. Our objective was to investigate the differences between cone-beam computed tomography (CBCT) and AR in calculating airway volumes and areas. METHODS: Subjects with prescribed CBCT images as part of their records were also asked to have AR performed. A total of 59 subjects (mean age, 15 ± 3.8 years) had their upper airway (5 areas) measured from CBCT images, acoustic rhinometry, and acoustic pharyngometry. Volumes and minimal cross-sectional areas were extracted and compared with software. RESULTS: Intraclass correlation on 20 randomly selected subjects, remeasured 2 weeks apart, showed high reliability (r >0.77). Means of total nasal volume were significantly different between the 2 methods (P = 0.035), but anterior nasal volume and minimal cross-sectional area showed no differences (P = 0.532 and P = 0.066, respectively). Pharyngeal volume showed significant differences (P = 0.01) with high correlation (r = 0.755), whereas pharyngeal minimal cross-sectional area showed no differences (P = 0.109). The pharyngeal volume difference may not be considered clinically significant, since it is 758 mm3 for measurements showing means of 11,000 ± 4000 mm3. CONCLUSIONS: CBCT is an accurate method for measuring anterior nasal volume, nasal minimal cross-sectional area, pharyngeal volume, and pharyngeal minimal cross-sectional area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dynamically reconfigurable time-division multiplexing (TDM) dense wavelength division multiplexing (DWDM) long-reach passive optical networks (PONs) can support the reduction of nodes and network interfaces by enabling a fully meshed flat optical core. In this paper we demonstrate the flexibility of the TDM-DWDM PON architecture, which can enable the convergence of multiple service types on a single physical layer. Heterogeneous services and modulation formats, i.e. residential 10G PON channels, business 100G dedicated channel and wireless fronthaul, are demonstrated co-existing on the same long reach TDM-DWDM PON system, with up to 100km reach, 512 users and emulated system load of 40 channels, employing amplifier nodes with either erbium doped fiber amplifiers (EDFAs) or semiconductor optical amplifiers (SOAs). For the first time end-to-end software defined networking (SDN) management of the access and core network elements is also implemented and integrated with the PON physical layer in order to demonstrate two service use cases: a fast protection mechanism with end-to-end service restoration in the case of a primary link failure; and dynamic wavelength allocation (DWA) in response to an increased traffic demand.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The need for elemental analysis of biological matrices such as bone, teeth, and plant matter for sourcing purposes has emerged within the forensic and geochemical laboratories. Trace elemental analyses for the comparison of aterials such as glass by inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS has been shown to offer a high degree of discrimination between different manufacturing sources. Unit resolution ICP-MS instruments may suffer from some polyatomic interferences including 40Ar16O+, 40Ar16O1H+, and 40Ca16O+ that affect iron measurement at trace levels. Iron is an important element in the analysis of glass and also of interest for the analysis of several biological matrices. A comparison of the nalytical performance of two different ICP-MS systems for iron analysis in glass for determining the method detection limits (MDLs), accuracy, and precision of the measurement is presented. Acid digestion and laser ablation methods are also compared. Iron polyatomic interferences were reduced or resolved by using dynamic reaction cell and high resolution ICP-MS. MDLs as low as 0.03 ìg g-1 and 0.14 ìg g-1 for laser ablation and solution based analyses respectively were achieved. The use of helium as a carrier gas demonstrated improvement in the detection limits of both iron isotopes (56Fe and 57Fe) in medium resolution for the HR-ICP-MS and with a dynamic reaction cell (DRC) coupled to a quadrupole ICP-MS system. The development and application of robust analytical methods for the quantification of trace elements in biological matrices has lead to a better understanding of the potential utility of these measurements in forensic chemical analyses. Standard reference materials (SRMs) were used in the development of an analytical method using HR-ICP-MS and LA-HR-ICP-MS that was subsequently applied on the analysis of real samples. Bone, teeth and ashed marijuana samples were analyzed with the developed method. Elemental analysis of bone samples from 12 different individuals provided discrimination between individuals, when femur and humerus bones were considered separately. Discrimination of 14 teeth samples based on elemental composition was achieved with the exception of one case where samples from the same individual were not associated with each other. The discrimination of 49 different ashed plant (cannabis)samples was achieved using the developed method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study examined the effect of a spanwise angle of attack gradient on the growth and stability of a dynamic stall vortex in a rotating system. It was found that a spanwise angle of attack gradient induces a corresponding spanwise vorticity gradient, which, in combination with spanwise flow, results in a redistribution of circulation along the blade. Specifically, when modelling the angle of attack gradient experienced by a wind turbine at the 30% span position during a gust event, the spanwise vorticity gradient was aligned such that circulation was transported from areas of high circulation to areas of low circulation, increasing the local dynamic stall vortex growth rate, which corresponds to an increase in the lift coefficient, and a decrease in the local vortex stability at this point. Reversing the relative alignment of the spanwise vorticity gradient and spanwise flow results in circulation transport from areas of low circulation generation to areas of high circulation generation, acting to reduce local circulation and stabilise the vortex. This circulation redistribution behaviour describes a mechanism by which the fluctuating loads on a wind turbine are magnified, which is detrimental to turbine lifetime and performance. Therefore, an understanding of this phenomenon has the potential to facilitate optimised wind turbine design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to report the knowledge used by expert high performance gymnastic coaches in the organization of training and competition. In-depth interviews were conducted with 9 coaches who worked with male gymnasts and 8 coaches who worked with female gymnasts. Qualitative analyses showed that coaches of males and coaches of females planned training similarly, except that coaches of females appeared to emphasize esthetic and nutritional issues to a greater extent. Coaches of males revealed more concerns about the organization of gymnasts' physical conditioning. Analysis indicated that expert gymnastic coaches of males and females are constantly involved in dynamic social interactions with gymnasts, parents, and assistant coaches. Many areas of coaches' organizational work, such as dealing with the athletes' personal concerns and working with parents, are not part of the structure of coaches' training programs and emerged as crucial tasks of expert gymnastic coaches for developing elite gymnasts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electric vehicle (EV) market has seen a rapid growth in the recent past. With an increase in the number of electric vehicles on road, there is an increase in the number of high capacity battery banks interfacing the grid. The battery bank of an EV, besides being the fuel tank, is also a huge energy storage unit. Presently, it is used only when the vehicle is being driven and remains idle for rest of the time, rendering it underutilized. Whereas on the other hand, there is a need of large energy storage units in the grid to filter out the fluctuations of supply and demand during a day. EVs can help bridge this gap. The EV battery bank can be used to store the excess energy from the grid to vehicle (G2V) or supply stored energy from the vehicle to grid (V2G ), when required. To let power flow happen, in both directions, a bidirectional AC-DC converter is required. This thesis concentrates on the bidirectional AC-DC converters which have a control on power flow in all four quadrants for the application of EV battery interfacing with the grid. This thesis presents a bidirectional interleaved full bridge converter topology. This helps in increasing the power processing and current handling capability of the converter which makes it suitable for the purpose of EVs. Further, the benefit of using the interleaved topology is that it increases the power density of the converter. This ensures optimization of space usage with the same power handling capacity. The proposed interleaved converter consists of two full bridges. The corresponding gate pulses of each switch, in one cell, are phase shifted by 180 degrees from those of the other cell. The proposed converter control is based on the one-cycle controller. To meet the challenge of new requirements of reactive power handling capabilities for grid connected converters, posed by the utilities, the controller is modified to make it suitable to process the reactive power. A fictitious current derived from the grid voltage is introduced in the controller, which controls the converter performance. The current references are generated using the second order generalized integrators (SOGI) and phase locked loop (PLL). A digital implementation of the proposed control ii scheme is developed and implemented using DSP hardware. The simulated and experimental results, based on the converter topology and control technique discussed here, are presented to show the performance of the proposed theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A double balanced (DBM) CMOS mixer providing high linearity is presented in this paper. A cross-coupled pair used in the IF stage of the mixer to dynamically inject current into the to mixer provide a high linearity. The proposed DBM was fabricated using a standard 130-nm CMOS process and was tested on-wafer. The double balanced mixer delivers 10 dB conversion gain, 9.5 dBm IIP3, and input P1dB of -2.4 dBm. RF bandwidth of the proposed mixer is 6 GHz, covering 0.5 GHz to 6.5 GHz with IF bandwidth of 300 MHz. RF to IF and LO to IF isolation are also better than 59 dB in the whole frequency band. The circuit uses an area of 0.015 mm2 excluding bonding pads and draw 4.5mW from a 1.2V supply.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the emerging prevalence of smart phones and 4G LTE networks, the demand for faster-better-cheaper mobile services anytime and anywhere is ever growing. The Dynamic Network Optimization (DNO) concept emerged as a solution that optimally and continuously tunes the network settings, in response to varying network conditions and subscriber needs. Yet, the DNO realization is still at infancy, largely hindered by the bottleneck of the lengthy optimization runtime. This paper presents the design and prototype of a novel cloud based parallel solution that further enhances the scalability of our prior work on various parallel solutions that accelerate network optimization algorithms. The solution aims to satisfy the high performance required by DNO, preliminarily on a sub-hourly basis. The paper subsequently visualizes a design and a full cycle of a DNO system. A set of potential solutions to large network and real-time DNO are also proposed. Overall, this work creates a breakthrough towards the realization of DNO.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As part of the ultrafast charge dynamics initiated by high intensity laser irradiations of solid targets,high amplitude EM pulses propagate away from the interaction point and are transported along anystalks and wires attached to the target. The propagation of these high amplitude pulses along a thinwire connected to a laser irradiated target was diagnosed via the proton radiography technique,measuring a pulse duration of 20 ps and a pulse velocity close to the speed of light. The strongelectric field associated with the EM pulse can be exploited for controlling dynamically the protonbeams produced from a laser-driven source. Chromatic divergence control of broadband laser drivenprotons (upto 75% reduction in divergence of >5 MeV protons) was obtained by winding the supportingwire around the proton beam axis to create a helical coil structure. In addition to providingfocussing and energy selection, the technique has the potential to post-accelerate the transiting protonsby the longitudinal component of the curved electric field lines produced by the helical coil lens.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

FPGAs and GPUs are often used when real-time performance in video processing is required. An accelerated processor is chosen based on task-specific priorities (power consumption, processing time and detection accuracy), and this decision is normally made once at design time. All three characteristics are important, particularly in battery-powered systems. Here we propose a method for moving selection of processing platform from a single design-time choice to a continuous run time one.We implement Histogram of Oriented Gradients (HOG) detectors for cars and people and Mixture of Gaussians (MoG) motion detectors running across FPGA, GPU and CPU in a heterogeneous system. We use this to detect illegally parked vehicles in urban scenes. Power, time and accuracy information for each detector is characterised. An anomaly measure is assigned to each detected object based on its trajectory and location, when compared to learned contextual movement patterns. This drives processor and implementation selection, so that scenes with high behavioural anomalies are processed with faster but more power hungry implementations, but routine or static time periods are processed with power-optimised, less accurate, slower versions. Real-time performance is evaluated on video datasets including i-LIDS. Compared to power-optimised static selection, automatic dynamic implementation mapping is 10% more accurate but draws 12W extra power in our testbed desktop system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Similarly to the case of LIF (Laser-Induced Fluorescence), an equally revolutionary impact to science is expected from resonant X-ray photo-pumping. It will particularly contribute to a progress in high energy density science: pumped core hole states create X-ray transitions that can escape dense matter on a 10 fs-time scale without essential photoabsorption, thus providing a unique possibility to study matter under extreme conditions. In the first proof of principle experiment at the X-ray Free Electron Laser LCLS at SCLAC [Seely, J., Rosmej, F.B., Shepherd, R., Riley, D., Lee, R.W. Proposal to Perform the 1st High Energy Density Plasma Spectroscopic Pump/Probe Experiment", approved LCLS proposal L332 (2010)] we have successfully pumped inner-shell X-ray transitions in dense plasmas. The plasma was generated with a YAG laser irradiating solid Al and Mg targets attached to a rotating cylinder. In parallel to the optical laser beam, the XFEL was focused into the plasma plume at different delay times and pump energies. Pumped X-ray transitions have been observed with a spherically bent crystal spectrometer coupled to a Princeton CCD. By using this experimental configuration, we have simultaneously achieved extremely high spectral (λ/δλ ≈ 5000) and spatial resolution (δx≈70 μm) while maintaining high luminosity and a large spectral range covered (6.90 - 8.35 Å). By precisely measuring the variations in spectra emitted from plasma under action of XFEL radiation, we have successfully demonstrated transient X- ray pumping in a dense plasma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The angle concept is a multifaceted concept having static and dynamic definitions. The static definition of the angle refers to “the space between two rays” or “the intersection of two rays at the same end point” (Mitchelmore & White, 1998), whereas the dynamic definition of the angle concept highlights that the size of angle is the amount of rotation in direction (Fyhn, 2006). Since both definitions represent two diverse situations and have unique limitations (Henderson & Taimina, 2005), students may hold misconceptions about the angle concept. In this regard, the aim of this research was to explore high achievers’ knowledge regarding the definition of the angle concept as well as to investigate their erroneous answers on the angle concept.

104 grade 6 students drawn from four well-established elementary schools of Yozgat, Turkey were participated in this research. All participants were selected via a purposive sampling method and their mathematics grades were 4 or 5 out of 5, and. Data were collected through four questions prepared by considering the learning competencies set out in the grade 6 curriculum in Turkey and the findings of previous studies whose purposes were to identify students’ misconceptions of the angle concept. The findings were analyzed by two researchers, and their inter-rater agreement was calculated as 0.91, or almost perfect. Thereafter, coding discrepancies were resolved, and consensus was established.

The angle concept is a multifaceted concept having static and dynamic definitions.The static definition of the angle refers to “the space between two rays” or“the intersection of two rays at the same end point” (Mitchelmore & White, 1998), whereas the dynamicdefinition of the angle concept highlights that the size of angle is the amountof rotation in direction (Fyhn, 2006). Since both definitionsrepresent two diverse situations and have unique limitations (Henderson & Taimina, 2005), students may holdmisconceptions about the angle concept. In this regard, the aim of thisresearch was to explore high achievers’ knowledge regarding the definition ofthe angle concept as well as to investigate their erroneous answers on theangle concept.

104grade 6 students drawn from four well-established elementary schools of Yozgat,Turkey were participated in this research. All participants were selected via a purposive sampling method and their mathematics grades were 4 or 5 out of 5,and. Data were collected through four questions prepared by considering the learning competencies set out in the grade 6 curriculum in Turkey and the findings of previous studies whose purposes were to identify students’ misconceptions of the angle concept. The findings were analyzed by two researchers, and their inter-rater agreement was calculated as 0.91, or almost perfect. Thereafter, coding discrepancies were resolved, and consensus was established.

In the first question, students were asked to answer a multiple choice questions consisting of two statics definitions and one dynamic definition of the angle concept. Only 38 of 104 students were able to recognize these three definitions. Likewise, Mitchelmore and White (1998) investigated that less than10% of grade 4 students knew the dynamic definition of the angle concept. Additionally,the purpose of the second question was to figure out how well students could recognize 0-degree angle. We found that 49 of 104 students were unable to recognize MXW as an angle. While 6 students indicated that the size of MXW is0, other 6 students revealed that the size of MXW is 360. Therefore, 12 of 104students correctly answered this questions. On the other hand, 28 of 104students recognized the MXW angle as 180-degree angle. This finding demonstrated that these students have difficulties in naming the angles.Moreover, the third question consisted of three concentric circles with center O and two radiuses of the outer circle, and the intersection of the radiuses with these circles were named. Then, students were asked to compare the size of AOB, GOD and EOF angles. Only 36 of 104 students answered correctly by indicating that all three angles are equal, whereas 68 of 104 students incorrectly responded this question by revealing AOB<GOD< EOF. These students erroneously thought the size of the angle is related to either the size of the arc marking the angle or the area between the arms of the angle and the arc marking angle. These two erroneous strategies for determining the size of angles have been found by a few studies (Clausen-May,2008; Devichi & Munier, 2013; Kim & Lee, 2014; Mithcelmore, 1998;Wilson & Adams, 1992). The last question, whose aim was to determine how well students can adapt theangle concept to real life, consisted of an observer and a barrier, and students were asked to color the hidden area behind the barrier. Only 2 of 104students correctly responded this question, whereas 19 of 104 students drew rays from the observer to both sides of the barrier, and colored the area covered by the rays, the observer and barrier. While 35 of 104 students just colored behind the barrier without using any strategies, 33 of 104 students constructed two perpendicular lines at the both end of the barrier, and colored behind the barrier. Similarly, Munier, Devinci and Merle (2008) found that this incorrect strategy was used by 27% of students.

Consequently, we found that although the participants in this study were high achievers, they still held several misconceptions on the angle concept and had difficulties in adapting the angle concept to real life.

Keywords: the angle concept;misconceptions; erroneous answers; high achievers

References

Clausen-May, T. (2008). AnotherAngle on Angles. Australian Primary Mathematics Classroom, 13(1),4–8.

Devichi, C., & Munier, V.(2013). About the concept of angle in elementary school: Misconceptions andteaching sequences. The Journal of Mathematical Behavior, 32(1),1–19. http://doi.org/10.1016/j.jmathb.2012.10.001

Fyhn, A. B. (2006). A climbinggirl’s reflections about angles. The Journal of Mathematical Behavior, 25(2),91–102. http://doi.org/10.1016/j.jmathb.2006.02.004

Henderson, D. W., & Taimina,D. (2005). Experiencing geometry: Euclidean and non-Euclidean with history(3rd ed.). New York, USA: Prentice Hall.

Kim, O.-K., & Lee, J. H.(2014). Representations of Angle and Lesson Organization in Korean and AmericanElementary Mathematics Curriculum Programs. KAERA Research Forum, 1(3),28–37.

Mitchelmore, M. C., & White,P. (1998). Development of angle concepts: A framework for research. MathematicsEducation Research Journal, 10(3), 4–27.

Mithcelmore, M. C. (1998). Youngstudents’ concepts of turning and angle. Cognition and Instruction, 16(3),265–284.

Munier, V., Devichi, C., &Merle, H. (2008). A Physical Situation as a Way to Teach Angle. TeachingChildren Mathematics, 14(7), 402–407.

Wilson, P. S., & Adams, V.M. (1992). A Dynamic Way to Teach Angle and Angle Measure. ArithmeticTeacher, 39(5), 6–13.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microturbines are among the most successfully commercialized distributed energy resources, especially when they are used for combined heat and power generation. However, the interrelated thermal and electrical system dynamic behaviors have not been fully investigated. This is technically challenging due to the complex thermo-fluid-mechanical energy conversion processes which introduce multiple time-scale dynamics and strong nonlinearity into the analysis. To tackle this problem, this paper proposes a simplified model which can predict the coupled thermal and electric output dynamics of microturbines. Considering the time-scale difference of various dynamic processes occuring within microturbines, the electromechanical subsystem is treated as a fast quasi-linear process while the thermo-mechanical subsystem is treated as a slow process with high nonlinearity. A three-stage subspace identification method is utilized to capture the dominant dynamics and predict the electric power output. For the thermo-mechanical process, a radial basis function model trained by the particle swarm optimization method is employed to handle the strong nonlinear characteristics. Experimental tests on a Capstone C30 microturbine show that the proposed modeling method can well capture the system dynamics and produce a good prediction of the coupled thermal and electric outputs in various operating modes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microturbines are among the most successfully commercialized distributed energy resources, especially when they are used for combined heat and power generation. However, the interrelated thermal and electrical system dynamic behaviors have not been fully investigated. This is technically challenging due to the complex thermo-fluid-mechanical energy conversion processes which introduce multiple time-scale dynamics and strong nonlinearity into the analysis. To tackle this problem, this paper proposes a simplified model which can predict the coupled thermal and electric output dynamics of microturbines. Considering the time-scale difference of various dynamic processes occuring within microturbines, the electromechanical subsystem is treated as a fast quasi-linear process while the thermo-mechanical subsystem is treated as a slow process with high nonlinearity. A three-stage subspace identification method is utilized to capture the dominant dynamics and predict the electric power output. For the thermo-mechanical process, a radial basis function model trained by the particle swarm optimization method is employed to handle the strong nonlinear characteristics. Experimental tests on a Capstone C30 microturbine show that the proposed modeling method can well capture the system dynamics and produce a good prediction of the coupled thermal and electric outputs in various operating modes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Android is becoming ubiquitous and currently has the largest share of the mobile OS market with billions of application downloads from the official app market. It has also become the platform most targeted by mobile malware that are becoming more sophisticated to evade state-of-the-art detection approaches. Many Android malware families employ obfuscation techniques in order to avoid detection and this may defeat static analysis based approaches. Dynamic analysis on the other hand may be used to overcome this limitation. Hence in this paper we propose DynaLog, a dynamic analysis based framework for characterizing Android applications. The framework provides the capability to analyse the behaviour of applications based on an extensive number of dynamic features. It provides an automated platform for mass analysis and characterization of apps that is useful for quickly identifying and isolating malicious applications. The DynaLog framework leverages existing open source tools to extract and log high level behaviours, API calls, and critical events that can be used to explore the characteristics of an application, thus providing an extensible dynamic analysis platform for detecting Android malware. DynaLog is evaluated using real malware samples and clean applications demonstrating its capabilities for effective analysis and detection of malicious applications.