945 resultados para High Nitrogen Load


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents an investigation of the ductile tearing properties for a girth weld made of an API 5L X80 pipeline steel using experimentally measured crack growth resistance curves. Use of these materials is motivated by the increasing demand in the number of applications for manufacturing high strength pipes for the oil and gas industry including marine applications and steel catenary risers. Testing of the pipeline girth welds employed side-grooved, clamped SE(T) specimens and shallow crack bend SE(B) specimens with a weld centerline notch to determine the crack growth resistance curves based upon the unloading compliance (UC) method using the single specimen technique. Recently developed compliance functions and η-factors applicable for SE(T) and SE(B) fracture specimens with homogeneous material and overmatched welds are introduced to determine crack growth resistance data from laboratory measurements of load-displacement records.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Human T-cell lymphotropic virus type 1 (HTLV-1) infection can increase the risk of developing skin disorders. This study evaluated the correlation between HTLV-1 proviral load and CD4+ and CD8+ T cells count among HTLV-1 infected individuals, with or without skin disorders (SD) associated with HTLV-1 infection [SD-HTLV-1: xerosis/ichthyosis, seborrheic dermatitis or infective dermatitis associated to HTLV-1 (IDH)]. Methods A total of 193 HTLV-1-infected subjects underwent an interview, dermatological examination, initial HTLV-1 proviral load assay, CD4+ and CD8+ T cells count, and lymphproliferation assay (LPA). Results A total of 147 patients had an abnormal skin condition; 116 (79%) of them also had SD-HTLV-1 and 21% had other dermatological diagnoses. The most prevalent SD-HTLV-1 was xerosis/acquired ichthyosis (48%), followed by seborrheic dermatitis (28%). Patients with SD-HTLV-1 were older (51 vs. 47 years), had a higher prevalence of myelopathy/tropical spastic paraparesis (HAM/TSP) (75%), and had an increased first HTLV-1 proviral load and basal LPA compared with patients without SD-HTLV-1. When excluding HAM/TSP patients, the first HTLV-1 proviral load of SD-HTLV-1 individuals remains higher than no SD-HTLV-1 patients. Conclusions There was a high prevalence of skin disorders (76%) among HTLV-1-infected individuals, regardless of clinical status, and 60% of these diseases are considered skin disease associated with HTLV-1 infection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In calcareous soils, which are a large share of agricultural soils worldwide, iron availability is limited. Consequently, the whole plant physiology is affected, because of the key role of iron in redox metabolism, resulting in reduced crop yield and quality. Peach cultivation is economically important in northern Italy, and is easily subjected to iron chlorosis. The management of iron nutrition in peach includes grafting on bicarbonate-tolerant rootstocks; other forms of management may be expensive and environmentally impacting. Four genotypes, used as rootstocks for peach and characterized by different degrees of tolerance to chlorosis, were tested in vitro on optimal and bicarbonate-enriched medium. Their redox status and antioxidant responses were assayed; the production and possible roles of nitric oxide (NO) and related compounds were also studied. The most sensitive genotypes show a stronger reduction of the antioxidant enzymatic activities and an increased oxidative stress. A high production of NO was found to be associated to resistant genotypes, whereas sensitive genotypes reacted to stress by downregulating nitrosoglutathione reductase activity. Therefore, NO is proposed to improve the internal iron availability, or to stimulate iron intake.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: The term Clinimetric was introduced by Feinstein in 1982, who first noticed that despite all the improvements in the assessment methods, a number of clinical phenomena were still unconsidered during the evaluation process. Yet today clinical phenomena, such as stress, relevant in diseases progression and course, are not completely evaluated. Only recently, according to the clinimetric approach, Fava and colleagues have introduced specific criteria for evaluating the allostatic overload in clinical setting. Methods: Participants were 240 blood donors recruited from May 2007 to December 2009 in 4 different blood Centers (AVIS) in Italy. Blood samples from each participant were collected for laboratory test the same day the self-rating instruments were administered (Psychosocial Index, Symptom Questionnaire, Psychological well-being scales, Temperament and Character inventory, Self-Report Altruism scale). The study explore different aspects describing sample characteristics and correlates of stress in the total sample (part I), new selection criteria applied to existing instruments to identify individuals reporting allostatic load (part II), and differences on biological correlates between subjects with vs without AL. Results: Significant differences according to gender and past illnesses have been found in different dimensions of well-being and distress. Further, distress was explained for more than 60% by 4 main factors such as anxiety, somatic symptoms, environmental mastery and persistence. According to the new criteria, 98 donors reported AL. Allostatic load individuals reported to engage in less altruistic behaviours. Also they differ in personality traits and characters from controls. In the last part, results showed significant differences among donors according to allostatic load on diverse biological parameters (RBC, MCV, immune essay). Conclusion: This study presents obvious limitations due to its preliminary nature. Further research are need to confirm that these new criteria may lead to identify high risk individuals reporting not only stressful situations but also vulnerabilities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the last years, sustainable horticulture has been increasing; however, to be successful this practice needs an efficient soil fertility management to maintain a high productivity and fruit quality standards. For this purpose composted organic materials from agri-food industry and municipal solid waste has been used as a source to replace chemical fertilizers and increase soil organic matter. To better understand the influence of compost application on soil fertility and plant growth, we carried out a study comparing organic and mineral nitrogen (N) fertilization in micro propagated plants, potted trees and commercial peach orchard with these aims: 1. evaluation of tree development, CO2 fixation and carbon partition to the different organs of two-years-old potted peach trees. 2. Determination of soil N concentration and nitrate-N effect on plant growth and root oxidative stress of micro propagated plant after increasing rates of N applications. 3. Assessment of soil chemical and biological fertility, tree growth and yield and fruit quality in a commercial orchard. The addition of compost at high rate was effective in increasing CO2 fixation, promoting root growth, shoot and fruit biomass. Furthermore, organic fertilizers influenced C partitioning, favoring C accumulation in roots, wood and fruits. The higher CO2 fixation was the result of a larger tree leaf area, rather than an increase in leaf photosynthetic efficiency, showing a stimulation of plant growth by application of compost. High concentrations of compost increased total soil N concentration, but were not effective in increasing nitrate-N soil concentration; in contrast mineral-N applications increased linearly soil nitrate-N, even at the lowest rate tested. Soil nitrate-N concentration influenced positively plant growth at low rate (60- 80 mg kg-1), whereas at high concentrations showed negative effects. In this trial, the decrease of root growth, as a response to excessive nitrate-N soil concentration, was not anticipated by root oxidative stress. Continuous annual applications of compost for 10 years enhanced soil organic matter content and total soil N concentration. Additionally, high rate of compost application (10 t ha-1 year-1) enhanced microbial biomass. On the other hand, different fertilizers management did not modify tree yield, but influenced fruit size and precocity index. The present data support the idea that organic fertilizers can be used successfully as a substitute of mineral fertilizers in fruit tree nutrient management, since they promote an increase of soil chemical and biological fertility, prevent excessive nitrate-N soil concentration, promote plant growth and potentially C sequestration into the soil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

At ecosystem level soil respiration (Rs) represents the largest carbon (C) flux after gross primary productivity, being mainly generated by root respiration (autotrophic respiration, Ra) and soil microbial respiration (heterotrophic respiration, Rh). In the case of terrestrial ecosystems, soils contain the largest C-pool, storing twice the amount of C contained in plant biomass. Soil organic matter (SOM), representing the main C storage in soil, is decomposed by soil microbial community. This process produces CO2 which is mainly released as Rh. It is thus relevant to understand how microbial activity is influenced by environmental factors like soil temperature, soil moisture and nutrient availability, since part of the CO2 produced by Rh, directly increases atmospheric CO2 concentration and therefore affects the phenomenon of climate change. Among terrestrial ecosystems, agricultural fields have traditionally been considered as sources of atmospheric CO2. In agricultural ecosystems, in particular apple orchards, I identified the role of root density, soil temperature, soil moisture and nitrogen (N) availability on Rs and on its two components, Ra and Rh. To do so I applied different techniques to separate Rs in its two components, the ”regression technique” and the “trenching technique”. I also studied the response of Ra to different levels of N availability, distributed either in a uniform or localized way, in the case of Populus tremuloides trees. The results showed that Rs is mainly driven by soil temperature, to which it is positively correlated, that high levels of soil moisture have inhibiting effects, and that N has a negligible influence on total Rs, as well as on Ra. Further I found a negative response of Rh to high N availability, suggesting that microbial decomposition processes in the soil are inhibited by the presence of N. The contribution of Ra to Rs was of 37% on average.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conjugated polymers are macromolecules that possess alternating single and double bonds along the main chain. These polymers combine the optoelectronic properties of semiconductors with the mechanical properties and processing advantages of plastics. In this thesis we discuss the synthesis, characterization and application of polyphenylene-based materials in various electronic devices. Poly(2,7-carbazole)s have the potential to be useful as blue emitters, but also as donor materials in solar cells due to their better hole-accepting properties. However, it is associated with two major drawbacks (1) the emission maximum occurs at 421 nm where the human eye is not very sensitive and (2) the 3- and 6- positions of carbazole are susceptible to chemical or electrochemical degradation. To overcome these problems, the ladder-type nitrogen-bridged polymers are synthesized. The resulting series of polymers, nitrogen-bridged poly(ladder-type tetraphenylene), nitrogen-bridged poly(ladder-type pentaphenylene), nitrogen-bridged poly(ladder-type hexaphenylene) and its derivatives are discussed in the light of photophysical and electrochemical properties and tested in PLEDs, solar cell, and OFETs. A promising trend which has emerged in recent years is the use of well defined oligomers as model compounds for their corresponding polymers. However, the uses of these molecules are many times limited by their solubility and one has to use vapor deposition techniques which require high vacuum and temperature and cannot be used for large area applications. One solution to this problem is the synthesis of small molecules having enough alkyl chain on the backbone so that they can be solution or melt processed and has the ability to form thin films like polymers as well as retain the high ordered structure characteristics of small molecules. Therefore, in the present work soluble ladderized oligomers based on thiophene and carbazole with different end group were made and tested in OFET devices. Carbazole is an attractive raw material for the synthesis of dyes since it is cheap and readily available. Carbazoledioxazine, commercially known as violet 23 is a representative compound of dioxazine pigments. As part of our efforts into developing cheap alternatives to violet 23, the synthesis and characterization of a new series of dyes by Buchwald-type coupling of 3-aminocarbazole with various isomers of chloroanthraquinone are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this work is to measure the stress inside a hard micro object under extreme compression. To measure the internal stress, we compressed ruby spheres (a-Al2O3: Cr3+, 150 µm diameter) between two sapphire plates. Ruby fluorescence spectrum shifts to longer wavelengths under compression and can be related to the internal stress by a conversion coefficient. A confocal laser scanning microscope was used to excite and collect fluorescence at desired local spots inside the ruby sphere with spatial resolution of about 1 µm3. Under static external loads, the stress distribution within the center plane of the ruby sphere was measured directly for the first time. The result agreed to Hertz’s law. The stress across the contact area showed a hemispherical profile. The measured contact radius was in accord with the calculation by Hertz’s equation. Stress-load curves showed spike-like decrease after entering non-elastic phase, indicating the formation and coalescence of microcracks, which led to relaxing of stress. In the vicinity of the contact area luminescence spectra with multiple peaks were observed. This indicated the presence of domains of different stress, which were mechanically decoupled. Repeated loading cycles were applied to study the fatigue of ruby at the contact region. Progressive fatigue was observed when the load exceeded 1 N. As long as the load did not exceed 2 N stress-load curves were still continuous and could be described by Hertz’s law with a reduced Young’s modulus. Once the load exceeded 2 N, periodical spike-like decreases of the stress could be observed, implying a “memory effect” under repeated loading cycles. Vibration loading with higher frequencies was applied by a piezo. Redistributions of intensity on the fluorescence spectra were observed and it was attributed to the repopulation of the micro domains of different elasticity. Two stages of under vibration loading were suggested. In the first stage continuous damage carried on until certain limit, by which the second stage, e.g. breakage, followed in a discontinuous manner.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Five different methods were critically examined to characterize the pore structure of the silica monoliths. The mesopore characterization was performed using: a) the classical BJH method of nitrogen sorption data, which showed overestimated values in the mesopore distribution and was improved by using the NLDFT method, b) the ISEC method implementing the PPM and PNM models, which were especially developed for monolithic silicas, that contrary to the particulate supports, demonstrate the two inflection points in the ISEC curve, enabling the calculation of pore connectivity, a measure for the mass transfer kinetics in the mesopore network, c) the mercury porosimetry using a new recommended mercury contact angle values. rnThe results of the characterization of mesopores of monolithic silica columns by the three methods indicated that all methods were useful with respect to the pore size distribution by volume, but only the ISEC method with implemented PPM and PNM models gave the average pore size and distribution based on the number average and the pore connectivity values.rnThe characterization of the flow-through pore was performed by two different methods: a) the mercury porosimetry, which was used not only for average flow-through pore value estimation, but also the assessment of entrapment. It was found that the mass transfer from the flow-through pores to mesopores was not hindered in case of small sized flow-through pores with a narrow distribution, b) the liquid penetration where the average flow-through pore values were obtained via existing equations and improved by the additional methods developed according to Hagen-Poiseuille rules. The result was that not the flow-through pore size influences the column bock pressure, but the surface area to volume ratio of silica skeleton is most decisive. Thus the monolith with lowest ratio values will be the most permeable. rnThe flow-through pore characterization results obtained by mercury porosimetry and liquid permeability were compared with the ones from imaging and image analysis. All named methods enable a reliable characterization of the flow-through pore diameters for the monolithic silica columns, but special care should be taken about the chosen theoretical model.rnThe measured pore characterization parameters were then linked with the mass transfer properties of monolithic silica columns. As indicated by the ISEC results, no restrictions in mass transfer resistance were noticed in mesopores due to their high connectivity. The mercury porosimetry results also gave evidence that no restrictions occur for mass transfer from flow-through pores to mesopores in the small scaled silica monoliths with narrow distribution. rnThe prediction of the optimum regimes of the pore structural parameters for the given target parameters in HPLC separations was performed. It was found that a low mass transfer resistance in the mesopore volume is achieved when the nominal diameter of the number average size distribution of the mesopores is appr. an order of magnitude larger that the molecular radius of the analyte. The effective diffusion coefficient of an analyte molecule in the mesopore volume is strongly dependent on the value of the nominal pore diameter of the number averaged pore size distribution. The mesopore size has to be adapted to the molecular size of the analyte, in particular for peptides and proteins. rnThe study on flow-through pores of silica monoliths demonstrated that the surface to volume of the skeletons ratio and external porosity are decisive for the column efficiency. The latter is independent from the flow-through pore diameter. The flow-through pore characteristics by direct and indirect approaches were assessed and theoretical column efficiency curves were derived. The study showed that next to the surface to volume ratio, the total porosity and its distribution of the flow-through pores and mesopores have a substantial effect on the column plate number, especially as the extent of adsorption increases. The column efficiency is increasing with decreasing flow through pore diameter, decreasing with external porosity, and increasing with total porosity. Though this tendency has a limit due to heterogeneity of the studied monolithic samples. We found that the maximum efficiency of the studied monolithic research columns could be reached at a skeleton diameter of ~ 0.5 µm. Furthermore when the intention is to maximize the column efficiency, more homogeneous monoliths should be prepared.rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Constant developments in the field of offshore wind energy have increased the range of water depths at which wind farms are planned to be installed. Therefore, in addition to monopile support structures suitable in shallow waters (up to 30 m), different types of support structures, able to withstand severe sea conditions at the greater water depths, have been developed. For water depths above 30 m, the jacket is one of the preferred support types. Jacket represents a lightweight support structure, which, in combination with complex nature of environmental loads, is prone to highly dynamic behavior. As a consequence, high stresses with great variability in time can be observed in all structural members. The highest concentration of stresses occurs in joints due to their nature (structural discontinuities) and due to the existence of notches along the welds present in the joints. This makes them the weakest elements of the jacket in terms of fatigue. In the numerical modeling of jackets for offshore wind turbines, a reduction of local stresses at the chord-brace joints, and consequently an optimization of the model, can be achieved by implementing joint flexibility in the chord-brace joints. Therefore, in this work, the influence of joint flexibility on the fatigue damage in chord-brace joints of a numerical jacket model, subjected to advanced load simulations, is studied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation presents the theory and the conducted activity that lead to the construction of a high voltage high frequency arbitrary waveform voltage generator. The generator has been specifically designed to supply power to a wide range of plasma actuators. The system has been completely designed, manufactured and tested at the Department of Electrical, Electronic and Information Engineering of the University of Bologna. The generator structure is based on the single phase cascaded H-bridge multilevel topology and is comprised of 24 elementary units that are series connected in order to form the typical staircase output voltage waveform of a multilevel converter. The total number of voltage levels that can be produced by the generator is 49. Each level is 600 V making the output peak-to-peak voltage equal to 28.8 kV. The large number of levels provides high resolution with respect to the output voltage having thus the possibility to generate arbitrary waveforms. Maximum frequency of operation is 20 kHz. A study of the relevant literature shows that this is the first time that a cascaded multilevel converter of such dimensions has been constructed. Isolation and control challenges had to be solved for the realization of the system. The biggest problem of the current technology in power supplies for plasma actuators is load matching. Resonant converters are the most used power supplies and are seriously affected by this problem. The manufactured generator completely solves this issue providing consistent voltage output independently of the connected load. This fact is very important when executing tests and during the comparison of the results because all measures should be comparable and not dependent from matching issues. The use of the multilevel converter for power supplying a plasma actuator is a real technological breakthrough that has provided and will continue to provide very significant experimental results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Copper(I) halide clusters are recently considered as good candidate for optoelectronic devices such as OLEDs . Although the copper halide clusters, in particular copper iodide, are very well known since the beginning of the 20th century, only in the late ‘70s the interest on these compounds grew dramatically due their particular photophysical behaviour. These complexes are characterized by a dual triplet emission bands, named Cluster Centred (3CC) and Halogen-to-Ligand charge transfer (3XLCT), the intensities of which are strictly related with the temperature. The CC transition, due to the presence of a metallophylic interactions, is prevalent at ambient temperature while the XLCT transition, located preferentially on the ligand part, became more prominent at low temperature. Since these pioneering works, it was easy to understand the photophysical properties of this compounds became more interesting in solid-state respect to solution with an improvement in emission efficiency. In this work we aim to characterize in SS organocopper(I)iodide compounds to valuate the correlation between the molecular crystal structure and the photophysical properties. It is also considered to hike new strategies to synthesize CuI complexes from the wet reactions to the more green solvent free methods. The advantages in using these strategies are evident but, obtain a single crystal suitable for SCXRD analysis from these batches is quite impossible. The structure solution still remains the key point in this research so we tackle this problem solving the structure by X-ray powder diffraction data. When the sample was fully characterized we moved to design and development of the associated OLED-device. Since copper iodide complexes are often insoluble in organic solvents, the high vacuum deposition technique is preferred. A new non-conventional deposition process have also been proposed to avoid the low complex stability in this practice with an in-situ complex formation in a layer-by layer deposition route.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nitrogen is an essential nutrient. It is for human, animal and plants a constituent element of proteins and nucleic acids. Although the majority of the Earth’s atmosphere consists of elemental nitrogen (N2, 78 %) only a few microorganisms can use it directly. To be useful for higher plants and animals elemental nitrogen must be converted to a reactive oxidized form. This conversion happens within the nitrogen cycle by free-living microorganisms, symbiotic living Rhizobium bacteria or by lightning. Humans are able to synthesize reactive nitrogen through the Haber-Bosch process since the beginning of the 20th century. As a result food security of the world population could be improved noticeably. On the other side the increased nitrogen input results in acidification and eutrophication of ecosystems and in loss of biodiversity. Negative health effects arose for humans such as fine particulate matter and summer smog. Furthermore, reactive nitrogen plays a decisive role at atmospheric chemistry and global cycles of pollutants and nutritive substances.rnNitrogen monoxide (NO) and nitrogen dioxide (NO2) belong to the reactive trace gases and are grouped under the generic term NOx. They are important components of atmospheric oxidative processes and influence the lifetime of various less reactive greenhouse gases. NO and NO2 are generated amongst others at combustion process by oxidation of atmospheric nitrogen as well as by biological processes within soil. In atmosphere NO is converted very quickly into NO2. NO2 is than oxidized to nitrate (NO3-) and to nitric acid (HNO3), which bounds to aerosol particles. The bounded nitrate is finally washed out from atmosphere by dry and wet deposition. Catalytic reactions of NOx are an important part of atmospheric chemistry forming or decomposing tropospheric ozone (O3). In atmosphere NO, NO2 and O3 are in photosta¬tionary equilibrium, therefore it is referred as NO-NO2-O3 triad. At regions with elevated NO concentrations reactions with air pollutions can form NO2, altering equilibrium of ozone formation.rnThe essential nutrient nitrogen is taken up by plants mainly by dissolved NO3- entering the roots. Atmospheric nitrogen is oxidized to NO3- within soil via bacteria by nitrogen fixation or ammonium formation and nitrification. Additionally atmospheric NO2 uptake occurs directly by stomata. Inside the apoplast NO2 is disproportionated to nitrate and nitrite (NO2-), which can enter the plant metabolic processes. The enzymes nitrate and nitrite reductase convert nitrate and nitrite to ammonium (NH4+). NO2 gas exchange is controlled by pressure gradients inside the leaves, the stomatal aperture and leaf resistances. Plant stomatal regulation is affected by climate factors like light intensity, temperature and water vapor pressure deficit. rnThis thesis wants to contribute to the comprehension of the effects of vegetation in the atmospheric NO2 cycle and to discuss the NO2 compensation point concentration (mcomp,NO2). Therefore, NO2 exchange between the atmosphere and spruce (Picea abies) on leaf level was detected by a dynamic plant chamber system under labo¬ratory and field conditions. Measurements took place during the EGER project (June-July 2008). Additionally NO2 data collected during the ECHO project (July 2003) on oak (Quercus robur) were analyzed. The used measuring system allowed simultaneously determina¬tion of NO, NO2, O3, CO2 and H2O exchange rates. Calculations of NO, NO2 and O3 fluxes based on generally small differences (∆mi) measured between inlet and outlet of the chamber. Consequently a high accuracy and specificity of the analyzer is necessary. To achieve these requirements a highly specific NO/NO2 analyzer was used and the whole measurement system was optimized to an enduring measurement precision.rnData analysis resulted in a significant mcomp,NO2 only if statistical significance of ∆mi was detected. Consequently, significance of ∆mi was used as a data quality criterion. Photo-chemical reactions of the NO-NO2-O3 triad in the dynamic plant chamber’s volume must be considered for the determination of NO, NO2, O3 exchange rates, other¬wise deposition velocity (vdep,NO2) and mcomp,NO2 will be overestimated. No significant mcomp,NO2 for spruce could be determined under laboratory conditions, but under field conditions mcomp,NO2 could be identified between 0.17 and 0.65 ppb and vdep,NO2 between 0.07 and 0.42 mm s-1. Analyzing field data of oak, no NO2 compensation point concentration could be determined, vdep,NO2 ranged between 0.6 and 2.71 mm s-1. There is increasing indication that forests are mainly a sink for NO2 and potential NO2 emissions are low. Only when assuming high NO soil emissions, more NO2 can be formed by reaction with O3 than plants are able to take up. Under these circumstance forests can be a source for NO2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transcatheter aortic valve implantation (TAVI) is an alternative to surgery for high-risk patients with severe aortic valve stenosis. Periprocedural stroke is reported at an incidence up to 10%. Magnetic resonance imaging studies have identified new onset of clinically silent ischaemic cerebral lesions more frequently (68-84%). So far, few data are available about cerebral embolism during TAVI. The aim of this study was to determine the frequency of high-intensity transient signals (HITS) and to explore differences in the HITS pattern between transfemoral and transapical access and between self-expanding (SE) and balloon-expandable (BE) deployment technique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electric power grids throughout the world suffer from serious inefficiencies associated with under-utilization due to demand patterns, engineering design and load following approaches in use today. These grids consume much of the world’s energy and represent a large carbon footprint. From material utilization perspectives significant hardware is manufactured and installed for this infrastructure often to be used at less than 20-40% of its operational capacity for most of its lifetime. These inefficiencies lead engineers to require additional grid support and conventional generation capacity additions when renewable technologies (such as solar and wind) and electric vehicles are to be added to the utility demand/supply mix. Using actual data from the PJM [PJM 2009] the work shows that consumer load management, real time price signals, sensors and intelligent demand/supply control offer a compelling path forward to increase the efficient utilization and carbon footprint reduction of the world’s grids. Underutilization factors from many distribution companies indicate that distribution feeders are often operated at only 70-80% of their peak capacity for a few hours per year, and on average are loaded to less than 30-40% of their capability. By creating strong societal connections between consumers and energy providers technology can radically change this situation. Intelligent deployment of smart sensors, smart electric vehicles, consumer-based load management technology very high saturations of intermittent renewable energy supplies can be effectively controlled and dispatched to increase the levels of utilization of existing utility distribution, substation, transmission, and generation equipment. The strengthening of these technology, society and consumer relationships requires rapid dissemination of knowledge (real time prices, costs & benefit sharing, demand response requirements) in order to incentivize behaviors that can increase the effective use of technological equipment that represents one of the largest capital assets modern society has created.