844 resultados para Heterogeneous information network
Resumo:
Over the last ten years, Salamanca has been considered among the most polluted cities in México. This paper presents a Self-Organizing Maps (SOM) Neural Network application to classify pollution data and automatize the air pollution level determination for Sulphur Dioxide (SO2) in Salamanca. Meteorological parameters are well known to be important factors contributing to air quality estimation and prediction. In order to observe the behavior and clarify the influence of wind parameters on the SO2 concentrations a SOM Neural Network have been implemented along a year. The main advantages of the SOM is that it allows to integrate data from different sensors and provide readily interpretation results. Especially, it is powerful mapping and classification tool, which others information in an easier way and facilitates the task of establishing an order of priority between the distinguished groups of concentrations depending on their need for further research or remediation actions in subsequent management steps. The results show a significative correlation between pollutant concentrations and some environmental variables.
Resumo:
We study a cognitive radio scenario in which the network of sec- ondary users wishes to identify which primary user, if any, is trans- mitting. To achieve this, the nodes will rely on some form of location information. In our previous work we proposed two fully distributed algorithms for this task, with and without a pre-detection step, using propagation parameters as the only source of location information. In a real distributed deployment, each node must estimate its own po- sition and/or propagation parameters. Hence, in this work we study the effect of uncertainty, or error in these estimates on the proposed distributed identification algorithms. We show that the pre-detection step significantly increases robustness against uncertainty in nodes' locations.
Resumo:
Sensor network deployments have become a primary source of big data about the real world that surrounds us, measuring a wide range of physical properties in real time. With such large amounts of heterogeneous data, a key challenge is to describe and annotate sensor data with high-level metadata, using and extending models, for instance with ontologies. However, to automate this task there is a need for enriching the sensor metadata using the actual observed measurements and extracting useful meta-information from them. This paper proposes a novel approach of characterization and extraction of semantic metadata through the analysis of sensor data raw observations. This approach consists in using approximations to represent the raw sensor measurements, based on distributions of the observation slopes, building a classi?cation scheme to automatically infer sensor metadata like the type of observed property, integrating the semantic analysis results with existing sensor networks metadata.
Resumo:
Information integration is a very important topic. Reusing the knowledge and having common and exchangeable representations have been an active research topic in process systems engineering. In this paper we deal with information integration in two different ways, the first one sharing knowledge between different heterogeneous applications and the second one integrating two different (but complementary) types of knowledge: functional and structural. A new architecture to integrate these representation and use for several purposes is presented in this paper.
Resumo:
In this paper, a simulation tool for assisting the deployment of wireless sensor network is introduced and simulation results are verified under a specific indoor environment. The simulation tool supports two modes: deterministic mode and stochastic mode. The deterministic mode is environment dependent in which the information of environment should be provided beforehand. Ray tracing method and deterministic propagation model are employed in order to increase the accuracy of the estimated coverage, connectivity and routing; the stochastic mode is useful for large scale random deployment without previous knowledge on geographic information. Dynamic Source Routing protocol (DSR) and Ad hoc On-Demand Distance Vector Routing protocol (AODV) are implemented in order to calculate the topology of WSN. Hence this tool gives direct view on the performance of WSN and assists users in finding the potential problems of wireless sensor network before real deployment. At the end, a case study is realized in Centro de Electronica Industrial (CEI), the simulation results on coverage, connectivity and routing are verified by the measurement.
Resumo:
Knowledge of the development of hydrographic networks can be useful for a number of research works in hydraulic engineering. We thus, intend to analyse the cartography regarding the first work that systematically encompasses the entire hydrographic network: Tomas Lopez’s Geographic Atlas of Spain (1787). In order to achieve this goal, we will first analyze –by way of the Geographic Information System (GIS) – both the present and referred historical cartographies. In comparing them, we will use the then-existing population centres that correspond to modern ones. The aim is to compare the following research variables in the hydrographic network: former toponyms, length of riverbeds and distance to population centres. The results of this study will show the variation in the riverbeds and the probable change in their denomination.
Resumo:
Las redes son la esencia de comunidades y sociedades humanas; constituyen el entramado en el que nos relacionamos y determinan cómo lo hacemos, cómo se disemina la información o incluso cómo las cosas se llevan a cabo. Pero el protagonismo de las redes va más allá del que adquiere en las redes sociales. Se encuentran en el seno de múltiples estructuras que conocemos, desde las interaciones entre las proteínas dentro de una célula hasta la interconexión de los routers de internet. Las redes sociales están presentes en internet desde sus principios, en el correo electrónico por tomar un ejemplo. Dentro de cada cliente de correo se manejan listas contactos que agregadas constituyen una red social. Sin embargo, ha sido con la aparición de los sitios web de redes sociales cuando este tipo de aplicaciones web han llegado a la conciencia general. Las redes sociales se han situado entre los sitios más populares y con más tráfico de la web. Páginas como Facebook o Twitter manejan cifras asombrosas en cuanto a número de usuarios activos, de tráfico o de tiempo invertido en el sitio. Pero las funcionalidades de red social no están restringidas a las redes sociales orientadas a contactos, aquellas enfocadas a construir tu lista de contactos e interactuar con ellos. Existen otros ejemplos de sitios que aprovechan las redes sociales para aumentar la actividad de los usuarios y su involucración alrededor de algún tipo de contenido. Estos ejemplos van desde una de las redes sociales más antiguas, Flickr, orientada al intercambio de fotografías, hasta Github, la red social de código libre más popular hoy en día. No es una casualidad que la popularidad de estos sitios web venga de la mano de sus funcionalidades de red social. El escenario es más rico aún, ya que los sitios de redes sociales interaccionan entre ellos, compartiendo y exportando listas de contactos, servicios de autenticación y proporcionando un valioso canal para publicitar la actividad de los usuarios en otros sitios web. Esta funcionalidad es reciente y aún les queda un paso hasta que las redes sociales superen su condición de bunkers y lleguen a un estado de verdadera interoperabilidad entre ellas, tal como funcionan hoy en día el correo electrónico o la mensajería instantánea. Este trabajo muestra una tecnología que permite construir sitios web con características de red social distribuída. En primer lugar, se presenta una tecnología para la construcción de un componente intermedio que permite proporcionar cualquier característica de gestión de contenidos al popular marco de desarrollo web modelo-vista-controlador (MVC) Ruby on Rails. Esta técnica constituye una herramienta para desarrolladores que les permita abstraerse de las complejidades de la gestión de contenidos y enfocarse en las particularidades de los propios contenidos. Esta técnica se usará también para proporcionar las características de red social. Se describe una nueva métrica de reusabilidad de código para demostrar la validez del componente intermedio en marcos MVC. En segundo lugar, se analizan las características de los sitios web de redes sociales más populares, con el objetivo de encontrar los patrones comunes que aparecen en ellos. Este análisis servirá como base para definir los requisitos que debe cumplir un marco para construir redes sociales. A continuación se propone una arquitectura de referencia que proporcione este tipo de características. Dicha arquitectura ha sido implementada en un componente, Social Stream, y probada en varias redes sociales, tanto orientadas a contactos como a contenido, en el contexto de una asociación vecinal tanto como en proyectos de investigación financiados por la UE. Ha sido la base de varios proyectos fin de carrera. Además, ha sido publicado como código libre, obteniendo una comunidad creciente y está siendo usado más allá del ámbito de este trabajo. Dicha arquitectura ha permitido la definición de un nuevo modelo de control de acceso social que supera varias limitaciones presentes en los modelos de control de acceso para redes sociales. Más aún, se han analizado casos de estudio de sitios de red social distribuídos, reuniendo un conjunto de caraterísticas que debe cumplir un marco para construir redes sociales distribuídas. Por último, se ha extendido la arquitectura del marco para dar cabida a las características de redes sociales distribuídas. Su implementación ha sido validada en proyectos de investigación financiados por la UE. Abstract Networks are the substance of human communities and societies; they constitute the structural framework on which we relate to each other and determine the way we do it, the way information is diseminated or even the way people get things done. But network prominence goes beyond the importance it acquires in social networks. Networks are found within numerous known structures, from protein interactions inside a cell to router connections on the internet. Social networks are present on the internet since its beginnings, in emails for example. Inside every email client, there are contact lists that added together constitute a social network. However, it has been with the emergence of social network sites (SNS) when these kinds of web applications have reached general awareness. SNS are now among the most popular sites in the web and with the higher traffic. Sites such as Facebook and Twitter hold astonishing figures of active users, traffic and time invested into the sites. Nevertheless, SNS functionalities are not restricted to contact-oriented social networks, those that are focused on building your own list of contacts and interacting with them. There are other examples of sites that leverage social networking to foster user activity and engagement around other types of content. Examples go from early SNS such as Flickr, the photography related networking site, to Github, the most popular social network repository nowadays. It is not an accident that the popularity of these websites comes hand-in-hand with their social network capabilities The scenario is even richer, due to the fact that SNS interact with each other, sharing and exporting contact lists and authentication as well as providing a valuable channel to publize user activity in other sites. These interactions are very recent and they are still finding their way to the point where SNS overcome their condition of data silos to a stage of full interoperability between sites, in the same way email and instant messaging networks work today. This work introduces a technology that allows to rapidly build any kind of distributed social network website. It first introduces a new technique to create middleware that can provide any kind of content management feature to a popular model-view-controller (MVC) web development framework, Ruby on Rails. It provides developers with tools that allow them to abstract from the complexities related with content management and focus on the development of specific content. This same technique is also used to provide the framework with social network features. Additionally, it describes a new metric of code reuse to assert the validity of the kind of middleware that is emerging in MVC frameworks. Secondly, the characteristics of top popular SNS are analysed in order to find the common patterns shown in them. This analysis is the ground for defining the requirements of a framework for building social network websites. Next, a reference architecture for supporting the features found in the analysis is proposed. This architecture has been implemented in a software component, called Social Stream, and tested in several social networks, both contact- and content-oriented, in local neighbourhood associations and EU-founded research projects. It has also been the ground for several Master’s theses. It has been released as a free and open source software that has obtained a growing community and that is now being used beyond the scope of this work. The social architecture has enabled the definition of a new social-based access control model that overcomes some of the limitations currenly present in access control models for social networks. Furthermore, paradigms and case studies in distributed SNS have been analysed, gathering a set of features for distributed social networking. Finally the architecture of the framework has been extended to support distributed SNS capabilities. Its implementation has also been validated in EU-founded research projects.
Resumo:
Neuronal morphology is a key feature in the study of brain circuits, as it is highly related to information processing and functional identification. Neuronal morphology affects the process of integration of inputs from other neurons and determines the neurons which receive the output of the neurons. Different parts of the neurons can operate semi-independently according to the spatial location of the synaptic connections. As a result, there is considerable interest in the analysis of the microanatomy of nervous cells since it constitutes an excellent tool for better understanding cortical function. However, the morphologies, molecular features and electrophysiological properties of neuronal cells are extremely variable. Except for some special cases, this variability makes it hard to find a set of features that unambiguously define a neuronal type. In addition, there are distinct types of neurons in particular regions of the brain. This morphological variability makes the analysis and modeling of neuronal morphology a challenge. Uncertainty is a key feature in many complex real-world problems. Probability theory provides a framework for modeling and reasoning with uncertainty. Probabilistic graphical models combine statistical theory and graph theory to provide a tool for managing domains with uncertainty. In particular, we focus on Bayesian networks, the most commonly used probabilistic graphical model. In this dissertation, we design new methods for learning Bayesian networks and apply them to the problem of modeling and analyzing morphological data from neurons. The morphology of a neuron can be quantified using a number of measurements, e.g., the length of the dendrites and the axon, the number of bifurcations, the direction of the dendrites and the axon, etc. These measurements can be modeled as discrete or continuous data. The continuous data can be linear (e.g., the length or the width of a dendrite) or directional (e.g., the direction of the axon). These data may follow complex probability distributions and may not fit any known parametric distribution. Modeling this kind of problems using hybrid Bayesian networks with discrete, linear and directional variables poses a number of challenges regarding learning from data, inference, etc. In this dissertation, we propose a method for modeling and simulating basal dendritic trees from pyramidal neurons using Bayesian networks to capture the interactions between the variables in the problem domain. A complete set of variables is measured from the dendrites, and a learning algorithm is applied to find the structure and estimate the parameters of the probability distributions included in the Bayesian networks. Then, a simulation algorithm is used to build the virtual dendrites by sampling values from the Bayesian networks, and a thorough evaluation is performed to show the model’s ability to generate realistic dendrites. In this first approach, the variables are discretized so that discrete Bayesian networks can be learned and simulated. Then, we address the problem of learning hybrid Bayesian networks with different kinds of variables. Mixtures of polynomials have been proposed as a way of representing probability densities in hybrid Bayesian networks. We present a method for learning mixtures of polynomials approximations of one-dimensional, multidimensional and conditional probability densities from data. The method is based on basis spline interpolation, where a density is approximated as a linear combination of basis splines. The proposed algorithms are evaluated using artificial datasets. We also use the proposed methods as a non-parametric density estimation technique in Bayesian network classifiers. Next, we address the problem of including directional data in Bayesian networks. These data have some special properties that rule out the use of classical statistics. Therefore, different distributions and statistics, such as the univariate von Mises and the multivariate von Mises–Fisher distributions, should be used to deal with this kind of information. In particular, we extend the naive Bayes classifier to the case where the conditional probability distributions of the predictive variables given the class follow either of these distributions. We consider the simple scenario, where only directional predictive variables are used, and the hybrid case, where discrete, Gaussian and directional distributions are mixed. The classifier decision functions and their decision surfaces are studied at length. Artificial examples are used to illustrate the behavior of the classifiers. The proposed classifiers are empirically evaluated over real datasets. We also study the problem of interneuron classification. An extensive group of experts is asked to classify a set of neurons according to their most prominent anatomical features. A web application is developed to retrieve the experts’ classifications. We compute agreement measures to analyze the consensus between the experts when classifying the neurons. Using Bayesian networks and clustering algorithms on the resulting data, we investigate the suitability of the anatomical terms and neuron types commonly used in the literature. Additionally, we apply supervised learning approaches to automatically classify interneurons using the values of their morphological measurements. Then, a methodology for building a model which captures the opinions of all the experts is presented. First, one Bayesian network is learned for each expert, and we propose an algorithm for clustering Bayesian networks corresponding to experts with similar behaviors. Then, a Bayesian network which represents the opinions of each group of experts is induced. Finally, a consensus Bayesian multinet which models the opinions of the whole group of experts is built. A thorough analysis of the consensus model identifies different behaviors between the experts when classifying the interneurons in the experiment. A set of characterizing morphological traits for the neuronal types can be defined by performing inference in the Bayesian multinet. These findings are used to validate the model and to gain some insights into neuron morphology. Finally, we study a classification problem where the true class label of the training instances is not known. Instead, a set of class labels is available for each instance. This is inspired by the neuron classification problem, where a group of experts is asked to individually provide a class label for each instance. We propose a novel approach for learning Bayesian networks using count vectors which represent the number of experts who selected each class label for each instance. These Bayesian networks are evaluated using artificial datasets from supervised learning problems. Resumen La morfología neuronal es una característica clave en el estudio de los circuitos cerebrales, ya que está altamente relacionada con el procesado de información y con los roles funcionales. La morfología neuronal afecta al proceso de integración de las señales de entrada y determina las neuronas que reciben las salidas de otras neuronas. Las diferentes partes de la neurona pueden operar de forma semi-independiente de acuerdo a la localización espacial de las conexiones sinápticas. Por tanto, existe un interés considerable en el análisis de la microanatomía de las células nerviosas, ya que constituye una excelente herramienta para comprender mejor el funcionamiento de la corteza cerebral. Sin embargo, las propiedades morfológicas, moleculares y electrofisiológicas de las células neuronales son extremadamente variables. Excepto en algunos casos especiales, esta variabilidad morfológica dificulta la definición de un conjunto de características que distingan claramente un tipo neuronal. Además, existen diferentes tipos de neuronas en regiones particulares del cerebro. La variabilidad neuronal hace que el análisis y el modelado de la morfología neuronal sean un importante reto científico. La incertidumbre es una propiedad clave en muchos problemas reales. La teoría de la probabilidad proporciona un marco para modelar y razonar bajo incertidumbre. Los modelos gráficos probabilísticos combinan la teoría estadística y la teoría de grafos con el objetivo de proporcionar una herramienta con la que trabajar bajo incertidumbre. En particular, nos centraremos en las redes bayesianas, el modelo más utilizado dentro de los modelos gráficos probabilísticos. En esta tesis hemos diseñado nuevos métodos para aprender redes bayesianas, inspirados por y aplicados al problema del modelado y análisis de datos morfológicos de neuronas. La morfología de una neurona puede ser cuantificada usando una serie de medidas, por ejemplo, la longitud de las dendritas y el axón, el número de bifurcaciones, la dirección de las dendritas y el axón, etc. Estas medidas pueden ser modeladas como datos continuos o discretos. A su vez, los datos continuos pueden ser lineales (por ejemplo, la longitud o la anchura de una dendrita) o direccionales (por ejemplo, la dirección del axón). Estos datos pueden llegar a seguir distribuciones de probabilidad muy complejas y pueden no ajustarse a ninguna distribución paramétrica conocida. El modelado de este tipo de problemas con redes bayesianas híbridas incluyendo variables discretas, lineales y direccionales presenta una serie de retos en relación al aprendizaje a partir de datos, la inferencia, etc. En esta tesis se propone un método para modelar y simular árboles dendríticos basales de neuronas piramidales usando redes bayesianas para capturar las interacciones entre las variables del problema. Para ello, se mide un amplio conjunto de variables de las dendritas y se aplica un algoritmo de aprendizaje con el que se aprende la estructura y se estiman los parámetros de las distribuciones de probabilidad que constituyen las redes bayesianas. Después, se usa un algoritmo de simulación para construir dendritas virtuales mediante el muestreo de valores de las redes bayesianas. Finalmente, se lleva a cabo una profunda evaluaci ón para verificar la capacidad del modelo a la hora de generar dendritas realistas. En esta primera aproximación, las variables fueron discretizadas para poder aprender y muestrear las redes bayesianas. A continuación, se aborda el problema del aprendizaje de redes bayesianas con diferentes tipos de variables. Las mixturas de polinomios constituyen un método para representar densidades de probabilidad en redes bayesianas híbridas. Presentamos un método para aprender aproximaciones de densidades unidimensionales, multidimensionales y condicionales a partir de datos utilizando mixturas de polinomios. El método se basa en interpolación con splines, que aproxima una densidad como una combinación lineal de splines. Los algoritmos propuestos se evalúan utilizando bases de datos artificiales. Además, las mixturas de polinomios son utilizadas como un método no paramétrico de estimación de densidades para clasificadores basados en redes bayesianas. Después, se estudia el problema de incluir información direccional en redes bayesianas. Este tipo de datos presenta una serie de características especiales que impiden el uso de las técnicas estadísticas clásicas. Por ello, para manejar este tipo de información se deben usar estadísticos y distribuciones de probabilidad específicos, como la distribución univariante von Mises y la distribución multivariante von Mises–Fisher. En concreto, en esta tesis extendemos el clasificador naive Bayes al caso en el que las distribuciones de probabilidad condicionada de las variables predictoras dada la clase siguen alguna de estas distribuciones. Se estudia el caso base, en el que sólo se utilizan variables direccionales, y el caso híbrido, en el que variables discretas, lineales y direccionales aparecen mezcladas. También se estudian los clasificadores desde un punto de vista teórico, derivando sus funciones de decisión y las superficies de decisión asociadas. El comportamiento de los clasificadores se ilustra utilizando bases de datos artificiales. Además, los clasificadores son evaluados empíricamente utilizando bases de datos reales. También se estudia el problema de la clasificación de interneuronas. Desarrollamos una aplicación web que permite a un grupo de expertos clasificar un conjunto de neuronas de acuerdo a sus características morfológicas más destacadas. Se utilizan medidas de concordancia para analizar el consenso entre los expertos a la hora de clasificar las neuronas. Se investiga la idoneidad de los términos anatómicos y de los tipos neuronales utilizados frecuentemente en la literatura a través del análisis de redes bayesianas y la aplicación de algoritmos de clustering. Además, se aplican técnicas de aprendizaje supervisado con el objetivo de clasificar de forma automática las interneuronas a partir de sus valores morfológicos. A continuación, se presenta una metodología para construir un modelo que captura las opiniones de todos los expertos. Primero, se genera una red bayesiana para cada experto y se propone un algoritmo para agrupar las redes bayesianas que se corresponden con expertos con comportamientos similares. Después, se induce una red bayesiana que modela la opinión de cada grupo de expertos. Por último, se construye una multired bayesiana que modela las opiniones del conjunto completo de expertos. El análisis del modelo consensuado permite identificar diferentes comportamientos entre los expertos a la hora de clasificar las neuronas. Además, permite extraer un conjunto de características morfológicas relevantes para cada uno de los tipos neuronales mediante inferencia con la multired bayesiana. Estos descubrimientos se utilizan para validar el modelo y constituyen información relevante acerca de la morfología neuronal. Por último, se estudia un problema de clasificación en el que la etiqueta de clase de los datos de entrenamiento es incierta. En cambio, disponemos de un conjunto de etiquetas para cada instancia. Este problema está inspirado en el problema de la clasificación de neuronas, en el que un grupo de expertos proporciona una etiqueta de clase para cada instancia de manera individual. Se propone un método para aprender redes bayesianas utilizando vectores de cuentas, que representan el número de expertos que seleccionan cada etiqueta de clase para cada instancia. Estas redes bayesianas se evalúan utilizando bases de datos artificiales de problemas de aprendizaje supervisado.
Resumo:
Analysis of big amount of data is a field with many years of research. It is centred in getting significant values, to make it easier to understand and interpret data. Being the analysis of interdependence between time series an important field of research, mainly as a result of advances in the characterization of dynamical systems from the signals they produce. In the medicine sphere, it is easy to find many researches that try to understand the brain behaviour, its operation mode and its internal connections. The human brain comprises approximately 1011 neurons, each of which makes about 103 synaptic connections. This huge number of connections between individual processing elements provides the fundamental substrate for neuronal ensembles to become transiently synchronized or functionally connected. A similar complex network configuration and dynamics can also be found at the macroscopic scales of systems neuroscience and brain imaging. The emergence of dynamically coupled cell assemblies represents the neurophysiological substrate for cognitive function such as perception, learning, thinking. Understanding the complex network organization of the brain on the basis of neuroimaging data represents one of the most impervious challenges for systems neuroscience. Brain connectivity is an elusive concept that refers to diferent interrelated aspects of brain organization: structural, functional connectivity (FC) and efective connectivity (EC). Structural connectivity refers to a network of physical connections linking sets of neurons, it is the anatomical structur of brain networks. However, FC refers to the statistical dependence between the signals stemming from two distinct units within a nervous system, while EC refers to the causal interactions between them. This research opens the door to try to resolve diseases related with the brain, like Parkinson’s disease, senile dementia, mild cognitive impairment, etc. One of the most important project associated with Alzheimer’s research and other diseases are enclosed in the European project called Blue Brain. The center for Biomedical Technology (CTB) of Universidad Politecnica de Madrid (UPM) forms part of the project. The CTB researches have developed a magnetoencephalography (MEG) data processing tool that allow to visualise and analyse data in an intuitive way. This tool receives the name of HERMES, and it is presented in this document. Analysis of big amount of data is a field with many years of research. It is centred in getting significant values, to make it easier to understand and interpret data. Being the analysis of interdependence between time series an important field of research, mainly as a result of advances in the characterization of dynamical systems from the signals they produce. In the medicine sphere, it is easy to find many researches that try to understand the brain behaviour, its operation mode and its internal connections. The human brain comprises approximately 1011 neurons, each of which makes about 103 synaptic connections. This huge number of connections between individual processing elements provides the fundamental substrate for neuronal ensembles to become transiently synchronized or functionally connected. A similar complex network configuration and dynamics can also be found at the macroscopic scales of systems neuroscience and brain imaging. The emergence of dynamically coupled cell assemblies represents the neurophysiological substrate for cognitive function such as perception, learning, thinking. Understanding the complex network organization of the brain on the basis of neuroimaging data represents one of the most impervious challenges for systems neuroscience. Brain connectivity is an elusive concept that refers to diferent interrelated aspects of brain organization: structural, functional connectivity (FC) and efective connectivity (EC). Structural connectivity refers to a network of physical connections linking sets of neurons, it is the anatomical structur of brain networks. However, FC refers to the statistical dependence between the signals stemming from two distinct units within a nervous system, while EC refers to the causal interactions between them. This research opens the door to try to resolve diseases related with the brain, like Parkinson’s disease, senile dementia, mild cognitive impairment, etc. One of the most important project associated with Alzheimer’s research and other diseases are enclosed in the European project called Blue Brain. The center for Biomedical Technology (CTB) of Universidad Politecnica de Madrid (UPM) forms part of the project. The CTB researches have developed a magnetoencephalography (MEG) data processing tool that allow to visualise and analyse data in an intuitive way. This tool receives the name of HERMES, and it is presented in this document.
Resumo:
INFOBIOMED is an European Network of Excellence (NoE) funded by the Information Society Directorate-General of the European Commission (EC). A consortium of European organizations from ten different countries is involved within the network. Four pilots, all related to linking clinical and genomic information, are being carried out. From an informatics perspective, various challenges, related to data integration and mining, are included.
Resumo:
Cloud computing and, more particularly, private IaaS, is seen as a mature technology with a myriad solutions tochoose from. However, this disparity of solutions and products has instilled in potential adopters the fear of vendor and data lock-in. Several competing and incompatible interfaces and management styles have given even more voice to these fears. On top of this, cloud users might want to work with several solutions at the same time, an integration that is difficult to achieve in practice. In this paper, we propose a management architecture that tries to tackle these problems; it offers a common way of managing several cloud solutions, and an interface that can be tailored to the needs of the user. This management architecture is designed in a modular way, and using a generic information model. We have validated our approach through the implementation of the components needed for this architecture to support a sample private IaaS solution: OpenStack
Resumo:
We propose a novel measure to assess the presence of meso-scale structures in complex networks. This measure is based on the identi?cation of regular patterns in the adjacency matrix of the network, and on the calculation of the quantity of information lost when pairs of nodes are iteratively merged. We show how this measure is able to quantify several meso-scale structures, like the presence of modularity, bipartite and core-periphery con?gurations, or motifs. Results corresponding to a large set of real networks are used to validate its ability to detect non-trivial topological patterns.
Resumo:
The deployment of home-based smart health services requires effective and reliable systems for personal and environmental data management. ooperation between Home Area Networks (HAN) and Body Area Networks (BAN) can provide smart systems with ad hoc reasoning information to support health care. This paper details the implementation of an architecture that integrates BAN, HAN and intelligent agents to manage physiological and environmental data to proactively detect risk situations at the digital home. The system monitors dynamic situations and timely adjusts its behavior to detect user risks concerning to health. Thus, this work provides a reasoning framework to infer appropriate solutions in cases of health risk episodes. Proposed smart health monitoring approach integrates complex reasoning according to home environment, user profile and physiological parameters defined by a scalable ontology. As a result, health care demands can be detected to activate adequate internal mechanisms and report public health services for requested actions.
Resumo:
Assets are interrelated in risk analysis methodologies for information systems promoted by international standards. This means that an attack on one asset can be propagated through the network and threaten an organization's most valuable assets. It is necessary to valuate all assets, the direct and indirect asset dependencies, as well as the probability of threats and the resulting asset degradation. These methodologies do not, however, consider uncertain valuations and use precise values on different scales, usually percentages. Linguistic terms are used by the experts to represent assets values, dependencies and frequency and asset degradation associated with possible threats. Computations are based on the trapezoidal fuzzy numbers associated with these linguistic terms.
Resumo:
Many progresses have been made since the Digital Earth notion was envisioned thirteen years ago. However, the mechanism for integrating geographic information into the Digital Earth is still quite limited. In this context, we have developed a process to generate, integrate and publish geospatial Linked Data from several Spanish National data-sets. These data-sets are related to four Infrastructure for Spatial Information in the European Community (INSPIRE) themes, specifically with Administrative units, Hydrography, Statistical units, and Meteorology. Our main goal is to combine different sources (heterogeneous, multidisciplinary, multitemporal, multiresolution, and multilingual) using Linked Data principles. This goal allows the overcoming of current problems of information integration and driving geographical information toward the next decade scenario, that is, ?Linked Digital Earth.?