983 resultados para Helber, Tim
Resumo:
Shore whaling along North America’s California and Baja California coasts during 1854–99 was ancillary to the offshore and alongshore American whale fishery, which had begun in the North Pacific in the early 1800’s and was flourishing by the 1840’s. From its inception at Monterey, Calif., in the mid 1850’s, the shore fishery, involving open boats deployed from land to catch and tow whales for processing, eventually spread from Monterey south to San Diego and Baja California and north to Crescent City near the California–Oregon border. It had declined to a relict industry by the 1880’s, although sporadic efforts continued into the early 20th century. The main target species were gray whales, Eschrichtius robustus, and humpback whales, Megaptera novaeangliae, with the valuable North Pacific right whale, Eubalaena japonica, also pursued opportunistically. Catch data are grossly incomplete for most stations; no logbooks were kept for these operations as they were for high-seas whaling voyages. Even when good information is available on catch levels, usually as number of whales landed or quantity of oil produced, it is rarely broken down by species. Therefore, we devised methods for extrapolation, interpolation, pro rationing, correction, and informed judgment to produce time series of catches. The resulting estimates of landings from 1854 to 1899 are 3,150 (SE = 112) gray whales and 1,637 (SE = 62) humpback whales. The numbers landed should be multiplied by 1.2 to account for hunting loss (i.e. whales harpooned or shot but not recovered and processed).
Resumo:
The 19th century commercial ship-based fishery for gray whales, Eschrichtius robustus, in the eastern North Pacific began in 1846 and continued until the mid 1870’s in southern areas and the 1880’s in the north. Henderson identified three periods in the southern part of the fishery: Initial, 1846–1854; Bonanza, 1855–1865; and Declining, 1866–1874. The largest catches were made by “lagoon whaling” in or immediately outside the whale population’s main wintering areas in Mexico—Magdalena Bay, Scammon’s Lagoon, and San Ignacio Lagoon. Large catches were also made by “coastal” or “alongshore” whaling where the whalers attacked animals as they migrated along the coast. Gray whales were also hunted to a limited extent on their feeding grounds in the Bering and Chukchi Seas in summer. Using all available sources, we identified 657 visits by whaling vessels to the Mexican whaling grounds during the gray whale breeding and calving seasons between 1846 and 1874. We then estimated the total number of such visits in which the whalers engaged in gray whaling. We also read logbooks from a sample of known visits to estimate catch per visit and the rate at which struck animals were lost. This resulted in an overall estimate of 5,269 gray whales (SE = 223.4) landed by the ship-based fleet (including both American and foreign vessels) in the Mexican whaling grounds from 1846 to 1874. Our “best” estimate of the number of gray whales removed from the eastern North Pacific (i.e. catch plus hunting loss) lies somewhere between 6,124 and 8,021, depending on assumptions about survival of struck-but-lost whales. Our estimates can be compared to those by Henderson (1984), who estimated that 5,542–5,507 gray whales were secured and processed by ship-based whalers between 1846 and 1874; Scammon (1874), who believed the total kill over the same period (of eastern gray whales by all whalers in all areas) did not exceed 10,800; and Best (1987), who estimated the total landed catch of gray whales (eastern and western) by American ship-based whalers at 2,665 or 3,013 (method-dependent) from 1850 to 1879. Our new estimates are not high enough to resolve apparent inconsistencies between the catch history and estimates of historical abundance based on genetic variability. We suggest several lines of further research that may help resolve these inconsistencies.
Resumo:
Estimates of incidental marine mammal, sea turtle, and seabird mortality in the California drift gillnet fishery for broadbill swordfish, Xiphias gladius, and common thresher shark, Alopias vulpinus, are summarized for the 7-year period, 1996 to 2002. Fishery observer coverage was 19% over the period (3,369 days observed/17,649 days fished). An experiment to test the effectiveness of acoustic pingers on reducing marine mammal entanglements in this fishery began in 1996 and resulted in statistically significant reductions in marine mammal bycatch. The most commonly entangled marine mammal species were the short-beaked common dolphin, Delphinus delphis; California sea lion, Zalophus californianus; and northern right whale dolphin, Lissodelphis borealis. Estimated mortality by species (CV and observed mortality in parentheses) from 1996 to 2002 is 861 (0.11, 133) short-beaked common dolphins; 553 (0.16, 103) California sea lions; 151 (0.25, 31) northern right whale dolphins; 150 (0.21, 27) northern elephant seals, Mirounga angustirostris; 54 (0.41, 10) long-beaked common dolphins, Delphinus capensis; 44 (0.53, 6) Dall’s porpoise, Phocoenoides dalli; 19 (0.60, 5) Risso’s dolphins, Grampus griseus; 11 (0.71, 2) gray whales, Eschrichtius robustus; 7 (0.83, 2) sperm whales, Physeter macrocephalus; 7 (0.96, 1) short-finned pilot whales, Globicephala macrorhychus; 12 (1.06, 1) minke whales, Balaenoptera acutorostrata; 5 (1.05, 1) fin whales, Balaenoptera physalus; 11 (0.68, 2) unidentified pinnipeds; 33 (0.52, 4) leatherback turtles, Dermochelys coriacea; 18 (0.57, 3) loggerhead turtles, Caretta caretta; 13 (0.73, 3) northern fulmars, Fulmarus glacialis; and 6 (0.86, 2) unidentified birds.
Resumo:
The mission of NOAA’s National Marine Sanctuary Program (NMSP) is to serve as the trustee for a system of marine protected areas, to conserve, protect, and enhance their biodiversity, ecological integrity, and cultural legacy while facilitating compatible uses. Since 1972, thirteen National Marine Sanctuaries, representing a wide variety of ocean environments, have been established, each with management goals tuned to their unique diversity. Extending from Cape Ann to Cape Cod across the mouth of Massachusetts Bay, Stellwagen Bank National Marine Sanctuary (NMS) encompasses 2,181 square kilometers of highly productive, diverse, and culturally unique Federal waters. As a result of its varied seafloor topography, oceanographic conditions, and high primary productivity, Stellwagen Bank NMS is utilized by diverse assemblages of seabirds, marine mammals, invertebrates, and fish species, as well as containing a number of maritime heritage resources. Furthermore, it is a region of cultural significance, highlighted by the recent discovery of several historic shipwrecks. Officially designated in 1992, Stellwagen Bank became the Nation’s twelfth National Marine Sanctuary in order to protect these and other unique biological, geological, oceanographic, and cultural features of the region. The Stellwagen Bank NMS is in the midst of its first management plan review since designation. The management plan review process, required by law, is designed to evaluate, enhance, and guide the development of future research efforts, education and outreach, and the management approaches used by Sanctuaries. Given the ecological and physical complexity of Stellwagen Bank NMS, burgeoning anthropogenic impacts to the region, and competing human and biological uses, the review process was challenged to assimilate and analyze the wealth of existing scientific knowledge in a framework which could enhance management decision-making. Unquestionably, the Gulf of Maine, Massachusetts Bay, and Stellwagen Bank-proper are extremely well studied systems, and in many regards, the scientific information available greatly exceeds that which is available for other Sanctuaries. However, the propensity of scientific information reinforces the need to utilize a comprehensive analytical approach to synthesize and explore linkages between disparate information on physical, biological, and chemical processes, while identifying topics needing further study. Given this requirement, a partnership was established between NOAA’s National Marine Sanctuary Program (NMSP) and the National Centers for Coastal Ocean Science (NCCOS) so as to leverage existing NOAA technical expertise to assist the Sanctuary in developing additional ecological assessment products which would benefit the management plan review process.
Mapping reef fish and the seascape: using acoustics and spatial modeling to guide coastal management
Resumo:
Reef fish distributions are patchy in time and space with some coral reef habitats supporting higher densities (i.e., aggregations) of fish than others. Identifying and quantifying fish aggregations (particularly during spawning events) are often top priorities for coastal managers. However, the rapid mapping of these aggregations using conventional survey methods (e.g., non-technical SCUBA diving and remotely operated cameras) are limited by depth, visibility and time. Acoustic sensors (i.e., splitbeam and multibeam echosounders) are not constrained by these same limitations, and were used to concurrently map and quantify the location, density and size of reef fish along with seafloor structure in two, separate locations in the U.S. Virgin Islands. Reef fish aggregations were documented along the shelf edge, an ecologically important ecotone in the region. Fish were grouped into three classes according to body size, and relationships with the benthic seascape were modeled in one area using Boosted Regression Trees. These models were validated in a second area to test their predictive performance in locations where fish have not been mapped. Models predicting the density of large fish (≥29 cm) performed well (i.e., AUC = 0.77). Water depth and standard deviation of depth were the most influential predictors at two spatial scales (100 and 300 m). Models of small (≤11 cm) and medium (12–28 cm) fish performed poorly (i.e., AUC = 0.49 to 0.68) due to the high prevalence (45–79%) of smaller fish in both locations, and the unequal prevalence of smaller fish in the training and validation areas. Integrating acoustic sensors with spatial modeling offers a new and reliable approach to rapidly identify fish aggregations and to predict the density large fish in un-surveyed locations. This integrative approach will help coastal managers to prioritize sites, and focus their limited resources on areas that may be of higher conservation value.
Resumo:
Washington depends on a healthy coastal and marine ecosystem to maintain a thriving economy and vibrant communities. These ecosystems support critical habitats for wildlife and a growing number of often competing ocean activities, such as fishing, transportation, aquaculture, recreation, and energy production. Planners, policy makers and resource managers are being challenged to sustainably balance ocean uses, and environmental conservation in a finite space and with limited information. This balancing act can be supported by spatial planning. Marine spatial planning (MSP) is a planning process that enables integrated, forward looking, and consistent decision making on the human uses of the oceans and coasts. It can improve marine resource management by planning for human uses in locations that reduce conflict, increase certainty, and support a balance among social, economic, and ecological benefits we receive from ocean resources. In March 2010, the Washington state legislature enacted a marine spatial planning law (RCW §43.372) to address resource use conflicts in Washington waters. In 2011, a report to the legislature and a workshop on human use data provided guidance for the marine spatial planning process. The report outlines a set of recommendations for the State to effectively undertake marine spatial planning and this work plan will support some of these recommendations, such as: federal integration, regional coordination, developing mechanisms to integrate scientific and technical expertise, developing data standards, and accessing and sharing spatial data. In 2012 the Governor amended the existing law to focus funding on mapping and ecosystem assessments for Washington’s Pacific coast and the legislature provided $2.1 million in funds to begin marine spatial planning off Washington’s coast. The funds are appropriated through the Washington Department of Natural Resources Marine Resources Stewardship Account with coordination among the State Ocean Caucus, the four Coastal Treaty Tribes, four coastal Marine Resource Committees and the newly formed stakeholder body, the Washington Coastal Marine Advisory Council.
Resumo:
研究了BAP在SLM→TIM、MA→TIM和切段诱导系统中与in vitro块茎发育的关系。在SLM→TIM系统中BAP没有促进块茎发育的作用;在MA→TIM系统中BAP具有促进块茎发育的作用;切段培养在20 ℃、8小时光照条件下则其块茎发育对BAP有依赖。系统地研究了光周期、蔗糖浓度和外源细胞分裂素在促进切段块茎发育方面的作用及其交互影响。确定了由切段诱导块茎的最佳培养条件以及用于BAP吸收代谢研究的实验条件。讨论了切段诱导系统在理论研究上的价值和生产上应用的前景。研究了无菌苗、长切段及切段BAP吸收运转代谢特点及其与块茎发育关系。马铃薯植物系统对BAP的吸收运转是需能代谢过程。BAP在植物系统运转性差与其在组织的代谢特点有关。在块茎诱导早期有标物质在小块茎或匍匐茎末端积累,这可能促使细胞分裂从而诱发块茎发育;但在成熟块茎中放射性物质浓度很低。外源细胞分裂素在切段或匍匐茎局部积累不是块茎发育的充分条件。在有利于块茎发育的条件下代谢早期BAP活性代谢产物含量明显地高于对照,代谢一定阶段后二种处理的切段BAP代谢谱趋于接近,这一代谢特点与BAP促进块茎发育的生理效应有关。运用同位素示踪技术研究了切段蔗糖吸收特点,外源细胞分裂素促进蔗糖在切段系统积累从而诱导体细胞储藏组织生化分化。短日照(黑暗)、较高浓度蔗糖、合适浓度BAP都有促进离体切段块茎发育作用,这几个因子在提高切段诱导水平方面具有协同效应。诱导早期切段中有块茎专一性糖蛋白Patatin痕量的存在。当切段发育了较大块茎后(诱导约15天)切段中Patatin含量明显增加。诱导3天切段系统中即有Patatin mRNA高水平地转录。诱导7天阶段Patatin mRNA含量迅速下降。块茎发育很可能是通过几种激素(包括块茎诱导因子)协同地对植物系统同化物尤其是蔗糖源库关系的调节而实现的。 建立了向马铃薯植物引入外源基因的受体系统。叶园盘与农杆菌(pGV2260:: pGV941)共培养。转化植株在选择培养基上培养大约3周即可从愈伤组织或直接从叶片边缘产生。在含有高浓度卡那霉素的培养基上转化植株大多表型正常,切段能够发育块茎,叶片能够形成愈伤组织。转化再生植株均含有NPT-II活性而未转化Desiree无菌苗没有NPT-II活性。Southern分析表明NPT-II基因已整合入转化植物基因组中。这一实验系统的建立为向马铃薯植物引进具有重要经济价值的外源基因创造了条件。
Resumo:
The Gap Analysis of Marine Ecosystem Data project is a review of available geospatial data which can assist in marine natural resource management for eight park units. The project includes the collection of geospatial information and its incorporation in a single consistent geodatabase format. The project also includes a mapping portal which can be seen at: http://ccma.nos.noaa.gov/explorer/gapanalysis/gap_analysis.html In addition to the collection of geospatial information and mapping portal we have conducted a gap analysis of a standard suite of available information for managing marine resources. Additional gap were identified by interviewing park service staff.
Resumo:
Marine protected areas (MPAs) represent a form of spatial management, and geospatial information on living marine resources and associated habitat is extremely important to support best management practices in a spatially discrete MPA. Benthic habitat maps provide georeferenced information on the geomorphic structure and biological cover types in the marine environment. This information supports an enhanced understanding of ecosystem function and species habitat utilization patterns. Benthic habitat maps are most useful for marine management and spatial planning purposes when they are created at a scale that is relevant to management actions. We sought to improve the resolution of existing benthic habitat maps created during a regional mapping effort in Hawai`i. Our results complemented these existing regional maps and provided more detailed, finer-scale habitat maps for a network of MPAs in West Hawai`i. The map products created during this study allow local planners and managers to extract information at a spatial scale relevant to the discrete management units, and appropriate for local marine management efforts on the Kona Coast. The resultant benthic habitat maps were integrated in a geographic information system (GIS) that also included aerial imagery, underwater video, MPA regulations, summarized ecological data and other relevant and spatially explicit information. The integration of the benthic habitat maps with additional “value added” geospatial information into a dynamic GIS provide a decision support tool with pertinent marine resource information available in one central location and support the application of a spatial approach to the management of marine resources. Further, this work can serve as a case study to demonstrate the integration of remote sensing products and GIS tools at a fine spatial scale relevant to local-level marine spatial planning and management efforts.
Resumo:
Coastal ecosystems and the services they provide are adversely affected by a wide variety of human activities. In particular, seagrass meadows are negatively affected by impacts accruing from the billion or more people who live within 50 km of them. Seagrass meadows provide important ecosystem services, including an estimated $1.9 trillion per year in the form of nutrient cycling; an order of magnitude enhancement of coral reef fish productivity; a habitat for thousands of fish, bird, and invertebrate species; and a major food source for endangered dugong, manatee, and green turtle. Although individual impacts from coastal development, degraded water quality, and climate change have been documented, there has been no quantitative global assessment of seagrass loss until now. Our comprehensive global assessment of 215 studies found that seagrasses have been disappearing at a rate of 110 square kilometers per year since 1980 and that 29% of the known areal extent has disappeared since seagrass areas were initially recorded in 1879. Furthermore, rates of decline have accelerated from a median of 0.9% per year before 1940 to 7% per year since 1990. Seagrass loss rates are comparable to those reported for mangroves, coral reefs, and tropical rainforests and place seagrass meadows among the most threatened ecosystems on earth.
Resumo:
We estimated the total number of pantropical spotted dolphin (Stenella attenuata) mothers killed without their calves (“calf deficit”) in all tuna purse-seine sets from 1973– 90 and 1996–2000 in the eastern tropical Pacific. Estimates were based on a tally of the mothers killed as reported by color pattern and gender, several color-pattern-based frequency tables, and a weaning model. Over the time series, there was a decrease in the calf deficit from approximately 2800 for the western-southern stock and 5000 in the northeastern stock to about 60 missing calves per year. The mean deficit per set decreased from approximately 1.5 missing calves per set in the mid-1970s to 0.01 per set in the late-1990s. Over the time series examined, from 75% to 95% of the lactating females killed were killed without a calf. Under the assumption that these orphaned calves did not survive without their mothers, this calf deficit represents an approximately 14% increase in the reported kill of calves, which is relatively constant across the years examined. Because the calf deficit as we have defined it is based on the kill of mothers, the total number of missing calves that we estimate is potentially an underestimate of the actual number killed. Further research on the mechanism by which separation of mother and calf occurs is required to obtain better estimates of the unobserved kill of dolphin calves in this fishery.
Resumo:
Between March 2000 and April 2001 two commercial fishing vessels fished for toothfish (Dissostichus eleginoides) off South Georgia using pots. A significant number of lithodid crabs (three species of Paralomis spp.) were caught as bycatch. Paralomis spinosissima occurred in shallow water, generally shallower than 700 m. Paralomis anamerae, not previously reported from this area and therefore representing a considerable southerly extension in the reported geographic range of this species, had an intermediate depth distribution from 400 to 800 m. Paralomis formosa was present in shallow waters but reached much higher catch levels (and, presumably, densities) between 800 and 1400 m. Differences were also noted in depth distribution of the sexes and size of crabs. Depth, soak time, and area were found to significantly influence crab catch rates. Few crabs (3% of P. spinosissima and 7% of P. formosa) were males above the legal size limit and could therefore be retained. All other crabs were discarded. Most crabs (>99% of P. formosa, >97% of P. spinosissima, and >90% of P. anamerae) were lively on arrival on deck and at subsequent discard. Mortality rates estimated from re-immersion experiments indicated that on the vessel where pots were emptied directly onto the factory conveyor belt 78–89% of crabs would survive discarding, whereas on the vessel where crabs were emptied down a vertical chute prior to being sorted, survivorship was 38–58%. Of the three, P. anamerae was the most vulnerable to handling onboard and sub-sequent discarding. Paralomis spinosissima seemed more vulnerable than P. formosa.
Resumo:
The vertical and horizontal movements of southern bluefin tuna (SBT), Thunnus maccoyii, in the Great Australian Bight were investigated by ultrasonic telemetry. Between 1992 and 1994, sixteen tuna were tracked for up to 49 h with depth or combined temperature-depth transmitting tags. The average swimming speeds (measured over the ground) over entire tracks ranged from 0.5 to 1.4 m/s or 0.5 to 1.4 body lengths/s. The highest sustained swimming speed recorded was 2.5 m/s for 18 hours. Horizontal movements were often associated with topographical features such as lumps, reefs, islands and the shelf break. They spent long periods of time at the surface during the day (nearly 30%), which would facilitate abundance estimation by aerial survey. At night, they tended to remain just below the surface, but many remained in the upper 10 m throughout the night. SBT were often observed at the thermocline interface or at the surface while travelling. A characteristic feature of many tracks was sudden dives before dawn and after sunset during twilight, followed by a gradual return to their original depth. It is suggested that this is a behavior evolved to locate the scattering layer and its associated prey when SBT are in waters of sufficient depth. SBT maintained a difference between stomach and ambient temperature of up to 9°C.