924 resultados para Heavy Vehicles, Air Suspensions, Dynamic Load Sharing, Suspension Testing, Suspension Dynamics
Resumo:
This paper describes the impact of electric mobility on the transmission grid in Flanders region (Belgium), using a micro-simulation activity based models. These models are used to provide temporal and spatial estimation of energy and power demanded by electric vehicles (EVs) in different mobility zones. The increment in the load demand due to electric mobility is added to the background load demand in these mobility areas and the effects over the transmission substations are analyzed. From this information, the total storage capacity per zone is evaluated and some strategies for EV aggregator are proposed, allowing the aggregator to fulfill bids on the electricity markets.
Resumo:
Crowd induced dynamic loading in large structures, such as gymnasiums or stadium, is usually modelled as a series of harmonic loads which are defined in terms of their Fourier coefficients. Different values of these coefficients that were obtained from full scale measurements can be found in codes. Recently, an alternative has been proposed, based on random generation of load time histories that take into account phase lag among individuals inside the crowd. This paper presents the testing done on a structure designed to be a gymnasium. Two series of dynamic test were performed on the gym slab. For the first test an electrodynamic shaker was placed at several locations and during the second one people located inside a marked area bounced and jumped guided by different metronome rates. A finite element model (FEM) is presented and a comparison of numerically predicted and experimentally observed vibration modes and frequencies has been used to assess its validity. The second group of measurements will be compared with predictions made using the FEM model and three alternatives for crowd induced load modelling.
Resumo:
Una investigación sobre la mejora de la contaminación del aire (CA) por medio de arbolado urbano se realizó en Madrid, una ciudad con casi 4 M de habitantes, 2,8 M de vehículos y casi 3 M de árboles de mantenimiento público. La mayoría de los árboles estaban en dos bosques periurbanos. Los 650.000 restantes era pies de alineación y parques. Los taxones estudiados fueron Platanus orientalis (97.205 árboles), Ulmus sp. (70.557), Pinus pinea (49.038), Aesculus hippocastanum (22.266), Cedrus sp. (13.678) y Quercus ilex (1.650), de calles y parques. Muestras foliares se analizaron en diferentes épocas del año, así como datos de contaminación por PM10 de 28 estaciones de medición de la contaminación durante 30 años, y también la intensidad del tráfico (IMD) en 2.660 calles. La acumulación de metales pesados (MP) sobre hojas y dentro de estas se estimó en relación con la CA y del suelo y la IMD del tráfico. La concentración media de Ba, Cd, Cr, Cu, Mn, Ni, Pb y Zn en suelo (materia seca) alcanzó: 489,5, 0,7, 49,4, 60,9, 460,9, 12,8, 155,9 y 190,3 mg kg-1 respectivamente. Los árboles urbanos, particularmente coníferas (debido a la mayor CA en invierno) contribuyen significativamente a mejorar la CA sobre todo en calles con alta IMD. La capacidad de las seis sp. para capturar partículas de polvo en su superficies foliares está relacionada con la IMD del tráfico y se estimó en 16,8 kg/año de MP tóxicos. Pb y Zn resultaron ser buenos marcadores antrópicos en la ciudad en relación con el tráfico, que fue la principal fuente de contaminación en los árboles y suelos de Madrid. Las especies de árboles variaron en función de su capacidad para capturar partículas (dependiendo de las propiedades de sus superficies foliares) y acumular los MP absorbidos de los suelos. Las concentraciones foliares de Pb y Zn estuvieron por encima de los límites establecidos en diferentes sitios de la ciudad. La microlocalización de Zn mediante microscópico mostró la translocación al xilema y floema. Se detectaron puntos de contaminación puntual de Cu and Cr en antiguos polígonos industriales y la distribución espacial de los MP en los suelos de Madrid mostró que en incluso en zonas interiores del El Retiro había ciertos niveles elevados de [Pb] en suelo, tal vez por el emplazamiento la Real Fábrica de Porcelana en la misma zona hace 200 años. Distintas áreas del centro de la ciudad también alcanzaron niveles altos de [Pb] en suelo. Según los resultados, el empleo de una combinación de Pinus pinea con un estrato intermedio de Ulmus sp. y Cedrus sp. puede ser la mejor recomendación como filtro verde eficiente. El efecto del ozono (O3) sobre el arbolado en Madrid fue también objeto de este estudio. A pesar de la reducción de precursores aplicada en muchos países industrializados, O3 sigue siendo la principal causa de CA en el hemisferio norte, con el aumento de [O3] de fondo. Las mayores [O3] se alcanzaron en regiones mediterráneas, donde el efecto sobre la vegetación natural es compensado por el xeromorfismo y la baja conductancia estomática en respuesta los episodios de sequía estival característicos de este clima. Durante una campaña de monitoreo, se identificaron daños abióticos en hojas de encina parecidos a los de O3 que estaban plantadas en una franja de césped con riego del centro de Madrid. Dada la poca evidencia disponible de los síntomas de O3 en frondosas perennifolias, se hizo un estudio que trató de 1) confirman el diagnóstico de daño de O3, 2) investigar el grado de los síntomas en encinas y 3) analizar los factores ambientales que contribuyeron a los daños por O3, en particular en lo relacionado con el riego. Se analizaron los marcadores macro y micromorfológicos de estrés por O3, utilizando las mencionadas encinas a modo de parcela experimental. Los síntomas consistieron en punteado intercostal del haz, que aumentó con la edad. Además de un punteado subyacente, donde las células superiores del mesófilo mostraron reacciones características de daños por O3. Las células próximas a las zonas dañadas, presentaron marcadores adicionales de estrés oxidativo. Estos marcadores morfológicos y micromorfológicos de estrés por O3 fueron similares a otras frondosas caducifolias con daños por O3. Sin embargo, en nuestro caso el punteado fue evidente con AOT40 de 21 ppm•h, asociada a riego. Análisis posteriores mostraron que los árboles con riego aumentaron su conductancia estomática, con aumento de senescencia, manteniéndose sin cambios sus características xeromórficas foliares. Estos hallazgos ponen de relieve el papel primordial de la disponibilidad de agua frente a las características xeromórficas a la hora de manifestarse los síntomas en las células por daños de O3 en encina. ABSTRACT Research about air pollution mitigation by urban trees was conducted in Madrid (Spain), a southern European city with almost 4 M inhabitants, 2.8 M daily vehicles and 3 M trees under public maintenance. Most trees were located in two urban forests, while 650'000 trees along urban streets and in parks. The urban taxa included Platanus orientalis (97'205 trees), Ulmus sp. (70’557), Pinus pinea (49'038), Aesculus hippocastanum (22’266), Cedrus sp. (13'678 and Quercus ilex (1'650) along streets and parks. Leave samples were analysed sequentially in different seasons, PM10 data from 28 air monitoring stations during 30 years and traffic density estimated from 2’660 streets. Heavy metal (HM) accumulation on the leaf surface and within leaves was estimated per tree related to air and soil pollution, and traffic intensity. Mean concentration of Ba, Cd, Cr, Cu, Mn, Ni, Pb and Zn in topsoil samples (dry mass) amounted in Madrid: 489.5, 0.7, 49.4, 60.9, 460.9, 12.8, 155.9 and 190.3 mg kg-1 respectively. Urban trees, particularly conifers (due to higher pollution in winter) contributed significantly to alleviate air pollution especially near to high ADT roads. The capacity of the six urban street trees species to capture air-born dust on the foliage surface as related to traffic intensity was estimated to 16.8 kg of noxious metals from exhausts per year. Pb and Zn pointed to be tracers of anthropic activity in the city with vehicle traffic as the main source of diffuse pollution on trees and soils. Tree species differed by their capacity to capture air-borne dust (by different leaf surface properties) and to allocate HM from soils. Pb and Zn concentrations in the foliage were above limits in different urban sites and microscopic Zn revelation showed translocation in xylem and phloem tissue. Punctual contamination in soils by Cu and Cr was identified in former industrial areas and spatial trace element mapping showed for central Retiro Park certain high values of [Pb] in soils even related to a Royal pottery 200 years ago. Different areas in the city centre also reached high levels [Pb] in soils. According to the results, a combination of Pinus pinea with understorey Ulmus sp. and Cedrus sp. layers can be recommended for the best air filter efficiency. The effects of ozone (O3) on trees in different areas of Madrid were also part of this study. Despite abatement programs of precursors implemented in many industrialized countries, ozone remained the main air pollutant throughout the northern hemisphere with background [O3] increasing. Some of the highest ozone concentrations were measured in regions with a Mediterranean climate but the effect on the natural vegetation is alleviated by low stomatal uptake and frequent leaf xeromorphy in response to summer drought episodes characteristic of this climate. During a bioindication survey, abiotic O3-like injury was identified in foliage. Trees were growing on an irrigated lawn strip in the centre of Madrid. Given the little structural evidence available for O3 symptoms in broadleaved evergreen species, a study was undertaken in 2007 with the following objectives 1) confirm the diagnosis, 2) investigate the extent of symptoms in holm oaks growing in Madrid and 3) analyse the environmental factors contributing to O3 injury, particularly, the site water supply. Therefore, macro- and micromorphological markers of O3 stress were analysed, using the aforementioned lawn strip as an intensive study site. Symptoms consisted of adaxial and intercostal stippling increasing with leaf age. Underlying stippling, cells in the upper mesophyll showed HR-like reactions typical of ozone stress. The surrounding cells showed further oxidative stress markers. These morphological and micromorphological markers of ozone stress were similar to those recorded in deciduous broadleaved species. However, stippling became obvious already at an AOT40 of 21 ppm•h and was primarily found at irrigated sites. Subsequent analyses showed that irrigated trees had their stomatal conductance increased and leaf life-span reduced whereas their leaf xeromorphy remained unchanged. These findings suggest a central role of water availability versus leaf xeromorphy for ozone symptom expression by cell injury in holm oak.
Resumo:
The interest for modelling of human actions acting on structures has been recurrent since the first accidents on suspension bridges in the nineteenth century like Broughton (1831) in the U.K. or Angers (1850) in France. Stadiums, gymnasiums are other type of structure where the human induced vibration is very important. In these structures appear particular phenomenon like the interaction person-structure (lock-in), the person-person synchronization, and the influence of the mass and damping of the people in the structure behaviour. This work focuses on the latter topic. The dynamic characteristic of a structure can be changed due to the presence of people on it. In order to evaluate these property modifications several testing have been carried out on a structure designed to be a gymnasium. For the test an electro-dynamic shaker was installed in a fixed point of the gym slab and different groups of people were located around the shaker. In each test the number of people was changed and also their posture (standing and sitting). Test data were analyzed and processed to verify modifications in the structure behaviour.
Resumo:
The interest for modelling of human actions acting on structures has been recurrent since the first accidents on suspension bridges in the nineteenth century such as Broughton (1831) in the U.K. or Angers (1850) in France. Stadiums, gymnasiums are other types of structure where human induced vibration is very important. In these structures a particular phenomenon appears such as the interaction personstructure (lock-in), the person-person synchronization, and the influence of the mass and damping of the people in the structural behaviour. This paper focuses on the latter topic. In order to evaluate these property modifications several tests have been carried out on a stand-alone building. For the test an electro-dynamic shaker was installed at a fixed point of the gym slab and different groups of people were located around the shaker. The dynamic characteristics of the structure without people inside have been calculated by two methods: using a three-dimensional finite element model of the building and by operational modal analysis. These calculated experimental and numerical values are the reference values used to evaluate the modifications in the dynamic properties of the structure.
Resumo:
La necesidad de desarrollar técnicas para predecir la respuesta vibroacústica de estructuras espaciales lia ido ganando importancia en los últimos años. Las técnicas numéricas existentes en la actualidad son capaces de predecir de forma fiable el comportamiento vibroacústico de sistemas con altas o bajas densidades modales. Sin embargo, ambos rangos no siempre solapan lo que hace que sea necesario el desarrollo de métodos específicos para este rango, conocido como densidad modal media. Es en este rango, conocido también como media frecuencia, donde se centra la presente Tesis doctoral, debido a la carencia de métodos específicos para el cálculo de la respuesta vibroacústica. Para las estructuras estudiadas en este trabajo, los mencionados rangos de baja y alta densidad modal se corresponden, en general, con los rangos de baja y alta frecuencia, respectivamente. Los métodos numéricos que permiten obtener la respuesta vibroacústica para estos rangos de frecuencia están bien especificados. Para el rango de baja frecuencia se emplean técnicas deterministas, como el método de los Elementos Finitos, mientras que, para el rango de alta frecuencia las técnicas estadísticas son más utilizadas, como el Análisis Estadístico de la Energía. En el rango de medias frecuencias ninguno de estos métodos numéricos puede ser usado con suficiente precisión y, como consecuencia -a falta de propuestas más específicas- se han desarrollado métodos híbridos que combinan el uso de métodos de baja y alta frecuencia, intentando que cada uno supla las deficiencias del otro en este rango medio. Este trabajo propone dos soluciones diferentes para resolver el problema de la media frecuencia. El primero de ellos, denominado SHFL (del inglés Subsystem based High Frequency Limit procedure), propone un procedimiento multihíbrido en el cuál cada subestructura del sistema completo se modela empleando una técnica numérica diferente, dependiendo del rango de frecuencias de estudio. Con este propósito se introduce el concepto de límite de alta frecuencia de una subestructura, que marca el límite a partir del cual dicha subestructura tiene una densidad modal lo suficientemente alta como para ser modelada utilizando Análisis Estadístico de la Energía. Si la frecuencia de análisis es menor que el límite de alta frecuencia de la subestructura, ésta se modela utilizando Elementos Finitos. Mediante este método, el rango de media frecuencia se puede definir de una forma precisa, estando comprendido entre el menor y el mayor de los límites de alta frecuencia de las subestructuras que componen el sistema completo. Los resultados obtenidos mediante la aplicación de este método evidencian una mejora en la continuidad de la respuesta vibroacústica, mostrando una transición suave entre los rangos de baja y alta frecuencia. El segundo método propuesto se denomina HS-CMS (del inglés Hybrid Substructuring method based on Component Mode Synthesis). Este método se basa en la clasificación de la base modal de las subestructuras en conjuntos de modos globales (que afectan a todo o a varias partes del sistema) o locales (que afectan a una única subestructura), utilizando un método de Síntesis Modal de Componentes. De este modo es posible situar espacialmente los modos del sistema completo y estudiar el comportamiento del mismo desde el punto de vista de las subestructuras. De nuevo se emplea el concepto de límite de alta frecuencia de una subestructura para realizar la clasificación global/local de los modos en la misma. Mediante dicha clasificación se derivan las ecuaciones globales del movimiento, gobernadas por los modos globales, y en las que la influencia del conjunto de modos locales se introduce mediante modificaciones en las mismas (en su matriz dinámica de rigidez y en el vector de fuerzas). Las ecuaciones locales se resuelven empleando Análisis Estadístico de Energías. Sin embargo, este último será un modelo híbrido, en el cual se introduce la potencia adicional aportada por la presencia de los modos globales. El método ha sido probado para el cálculo de la respuesta de estructuras sometidas tanto a cargas estructurales como acústicas. Ambos métodos han sido probados inicialmente en estructuras sencillas para establecer las bases e hipótesis de aplicación. Posteriormente, se han aplicado a estructuras espaciales, como satélites y reflectores de antenas, mostrando buenos resultados, como se concluye de la comparación de las simulaciones y los datos experimentales medidos en ensayos, tanto estructurales como acústicos. Este trabajo abre un amplio campo de investigación a partir del cual es posible obtener metodologías precisas y eficientes para reproducir el comportamiento vibroacústico de sistemas en el rango de la media frecuencia. ABSTRACT Over the last years an increasing need of novel prediction techniques for vibroacoustic analysis of space structures has arisen. Current numerical techniques arc able to predict with enough accuracy the vibro-acoustic behaviour of systems with low and high modal densities. However, space structures are, in general, very complex and they present a range of frequencies in which a mixed behaviour exist. In such cases, the full system is composed of some sub-structures which has low modal density, while others present high modal density. This frequency range is known as the mid-frequency range and to develop methods for accurately describe the vibro-acoustic response in this frequency range is the scope of this dissertation. For the structures under study, the aforementioned low and high modal densities correspond with the low and high frequency ranges, respectively. For the low frequency range, deterministic techniques as the Finite Element Method (FEM) are used while, for the high frequency range statistical techniques, as the Statistical Energy Analysis (SEA), arc considered as more appropriate. In the mid-frequency range, where a mixed vibro-acoustic behaviour is expected, any of these numerical method can not be used with enough confidence level. As a consequence, it is usual to obtain an undetermined gap between low and high frequencies in the vibro-acoustic response function. This dissertation proposes two different solutions to the mid-frequency range problem. The first one, named as The Subsystem based High Frequency Limit (SHFL) procedure, proposes a multi-hybrid procedure in which each sub-structure of the full system is modelled with the appropriate modelling technique, depending on the frequency of study. With this purpose, the concept of high frequency limit of a sub-structure is introduced, marking out the limit above which a substructure has enough modal density to be modelled by SEA. For a certain analysis frequency, if it is lower than the high frequency limit of the sub-structure, the sub-structure is modelled through FEM and, if the frequency of analysis is higher than the high frequency limit, the sub-structure is modelled by SEA. The procedure leads to a number of hybrid models required to cover the medium frequency range, which is defined as the frequency range between the lowest substructure high frequency limit and the highest one. Using this procedure, the mid-frequency range can be define specifically so that, as a consequence, an improvement in the continuity of the vibro-acoustic response function is achieved, closing the undetermined gap between the low and high frequency ranges. The second proposed mid-frequency solution is the Hybrid Sub-structuring method based on Component Mode Synthesis (HS-CMS). The method adopts a partition scheme based on classifying the system modal basis into global and local sets of modes. This classification is performed by using a Component Mode Synthesis, in particular a Craig-Bampton transformation, in order to express the system modal base into the modal bases associated with each sub-structure. Then, each sub-structure modal base is classified into global and local set, fist ones associated with the long wavelength motion and second ones with the short wavelength motion. The high frequency limit of each sub-structure is used as frequency frontier between both sets of modes. From this classification, the equations of motion associated with global modes are derived, which include the interaction of local modes by means of corrections in the dynamic stiffness matrix and the force vector of the global problem. The local equations of motion are solved through SEA, where again interactions with global modes arc included through the inclusion of an additional input power into the SEA model. The method has been tested for the calculation of the response function of structures subjected to structural and acoustic loads. Both methods have been firstly tested in simple structures to establish their basis and main characteristics. Methods are also verified in space structures, as satellites and antenna reflectors, providing good results as it is concluded from the comparison with experimental results obtained in both, acoustic and structural load tests. This dissertation opens a wide field of research through which further studies could be performed to obtain efficient and accurate methodologies to appropriately reproduce the vibro-acoustic behaviour of complex systems in the mid-frequency range.
Resumo:
Esta Tesis presenta un estudio sobre el comportamiento vibroacústico de estructuras espaciales que incluyen capas de aire delgadas, así como sobre su modelización numérica. Las capas de aire pueden constituir un elemento fundamental en estos sistemas, como paneles solares plegados, que se consideran el caso de estudio en este trabajo. Para evaluar la influencia de las capas de aire en la respuesta dinámica del sistema se presenta el uso de modelos unidimensionales. La modelización de estos sistemas se estudia para los rangos de baja y alta frecuencia. En el rango de baja frecuencia se propone un conjunto de estrategias de simulación basadas en técnicas numéricas que se utilizan habitualmente en la industria aeroespacial para facilitar la aplicación de los resultados de la Tesis en los modelos numéricos actuales. Los resultados muestran el importante papel de las capas de aire en la respuesta del sistema. El uso de modelos basados en elementos finitos o de contorno para estos elementos proporciona resultados equivalentes aunque la aplicabilidad de estos últimos puede estar condicionada por la geometría del problema. Se estudia asimismo el uso del Análisis Estadístico de la Energía (SEA) para estos elementos. Una de las estrategias de simulación propuestas, que incluye una formulación energética para el aire que rodea a la estructura, se propone como estimador preliminar de la respuesta del sistema y sus frecuencias propias. Para el rango de alta frecuencia, se estudia la influencia de la definición del propio modelo SEA. Se presenta el uso de técnicas de reducción para determinar una matriz de pérdidas SEA reducida para definiciones incompletas del sistema (si algún elemento que interactúa con el resto no se incluye en el modelo). Esta nueva matriz tiene en cuenta la contribución de las subestructuras que no se consideran parte del modelo y que suelen ignorarse en el procedimiento habitual para reducir el tamaño del mismo. Esta matriz permite también analizar sistemas que incluyen algún componente con problemas de accesibilidad para medir su respuesta. Respecto a la determinación de los factores de pérdidas del sistema, se presenta una metodología que permite abordar casos en los que el método usual, el Método de Inyección de Potencia (PIM), no puede usarse. Se presenta un conjunto de métodos basados en la técnicas de optimización y de actualización de modelos para casos en los que no se puede medir la respuesta de todos los elementos del sistema y también para casos en los que no todos los elementos pueden ser excitados, abarcando un conjunto de casos más amplio que el abordable con el PIM. Para ambos rangos de frecuencia se presentan diferentes casos de análisis: modelos numéricos para validar los métodos propuestos y un panel solar plegado como caso experimental que pone de manifiesto la aplicación práctica de los métodos presentados en la Tesis. ABSTRACT This Thesis presents an study on the vibro-acoustic behaviour of spacecraft structures with thin air layers and their numerical modelling. The air layers can play a key role in these systems as solar wings in folded configuration that constitute the study case for this Thesis. A method based on one-dimensional models is presented to assess the influence of the air layers in the dynamic response of the system. The modelling of such systems is studied for low and high frequency ranges. In the low frequency range a set of modelling strategies are proposed based on numerical techniques used in the industry to facilitate the application of the results in the current numerical models. Results show the active role of the air layers in the system response and their great level of influence. The modelling of these elements by means of Finite Elements (FE) and Boundary Elements (BE) provide equivalent results although the applicability of BE models can be conditioned by the geometry of the problem. The use of Statistical Energy Analysis (SEA) for these systems is also presented. Good results on the system response are found for models involving SEA beyond the usual applicability limit. A simulation strategy, involving energetic formulation for the surrounding fluid is proposed as fast preliminary approach for the system response and the coupled eigenfrequencies. For the high frequency range, the influence of the definition of the SEA model is presented. Reduction techniques are used to determine a Reduced SEA Loss Matrix if the system definition is not complete and some elements, which interact with the rest, are not included. This new matrix takes into account the contribution of the subsystems not considered that are neglected in the usual approach for decreasing the size of the model. It also allows the analysis of systems with accessibility restrictions on some element in order to measure its response. Regarding the determination of the loss factors of a system, a methodology is presented for cases in which the usual Power Injection Method (PIM) can not be applied. A set of methods are presented for cases in which not all the subsystem responses can be measured or not all the subsystems can be excited, as solar wings in folded configuration. These methods, based on error minimising and model updating techniques can be used to calculate the system loss factors in a set of cases wider than the PIM’s. For both frequency ranges, different test problems are analysed: Numerical models are studied to validate the methods proposed; an experimental case consisting in an actual solar wing is studied on both frequency ranges to highlight the industrial application of the new methods presented in the Thesis.
Resumo:
This research on odometry based GPS-denied navigation on multirotor Unmanned Aerial Vehicles is focused among the interactions between the odometry sensors and the navigation controller. More precisely, we present a controller architecture that allows to specify a speed specified flight envelope where the quality of the odometry measurements is guaranteed. The controller utilizes a simple point mass kinematic model, described by a set of configurable parameters, to generate a complying speed plan. For experimental testing, we have used down-facing camera optical-flow as odometry measurement. This work is a continuation of prior research to outdoors environments using an AR Drone 2.0 vehicle, as it provides reliable optical flow on a wide range of flying conditions and floor textures. Our experiments show that the architecture is realiable for outdoors flight on altitudes lower than 9 m. A prior version of our code was utilized to compete in the International Micro Air Vehicle Conference and Flight Competition IMAV 2012. The code will be released as an open-source ROS stack hosted on GitHub.
Resumo:
The assessment on introducing Longer and Heavier Vehicles (LHVs) on the road freight transport demand is performed in this paper by applying an integrated modeling approach composed of a Random Utility-Based Multiregional Input-Output model (RUBMRIO) and a road transport network model. The approach strongly supports the concept that changes in transport costs derived from the LHVs allowance as well as the economic structure of regions have both direct and indirect effects on the road freight transport system. In addition, we estimate the magnitude and extent of demand changes in the road freight transportation system by using the commodity-based structure of the approach to identify the effect on traffic flows and on pollutant emissions over the whole network of Spain by considering a sensitivity analysis of the main parameters which determine the share of Heavy-Goods Vehicles (HGVs) and LHVs. The results show that the introduction of LHVs will strengthen the competitiveness of the road haulage sector by reducing costs, emissions, and the total freight vehicles required.
Resumo:
El gran desarrollo experimentado por la alta velocidad en los principales países de la Unión Europea, en los últimos 30 años, hace que este campo haya sido y aún sea uno de los principales referentes en lo que a investigación se refiere. Por otra parte, la aparición del concepto super − alta velocidad hace que la investigación en el campo de la ingeniería ferroviaria siga adquiriendo importancia en los principales centros de investigación de los países en los que se desea implantar este modo de transporte, o en los que habiendo sido ya implantado, se pretenda mejorar. Las premisas de eficacia, eficiencia, seguridad y confort, que este medio de transporte tiene como razón de ser pueden verse comprometidas por diversos factores. Las zonas de transición, definidas en la ingeniería ferroviaria como aquellas secciones en las que se produce un cambio en las condiciones de soporte de la vía, pueden afectar al normal comportamiento para el que fue diseñada la infraestructura, comprometiendo seriamente los estándares de eficiencia en el tiempo de viaje, confort de los pasajeros y aumentando considerablemente los costes de mantenimiento de la vía, si no se toman las medidas oportunas. En esta tesis se realiza un estudio detallado de la zonas de transición, concretamente de aquellas en las que existe una cambio en la rigidez vertical de la vía debido a la presencia de un marco hidráulico. Para realizar dicho estudio se lleva a cabo un análisis numérico de interacción entre el vehículo y la estructura, con un modelo bidimensional de elemento finitos, calibrado experimentalmente, en estado de tensión plana. En este análisis se tiene en cuenta el efecto de las irregularidades de la vía y el comportamiento mecánico de la interfaz suelo-estructura, con el objetivo de reproducir de la forma más real posible el efecto de interacción entre el vehículo, la vía y la estructura. Otros efectos como la influencia de la velocidad del tren y los asientos diferenciales, debidos a deformaciones por consolidación de los terraplenes a ambos lados el marco hidráulico, son también analizados en este trabajo. En esta tesis, los cálculos de interacción se han llevado a cabo en dos fases diferentes. En la primera, se ha considerado una interacción sencilla debida al paso de un bogie de un tren Eurostar. Los cálculos derivados de esta fase se han denominado cálculos a corto plazo. En la segunda, se ha realizado un análisis considerando múltiples pasos de bogie del tren Eurostar, conformando un análisis de degradación en el que se tiene en cuenta, en cada ciclo, la deformación de la capa de balasto. Los cálculos derivados de esta fase, son denominados en el texto como cálculos a largo plazo. Los resultados analizados muestran que la utilización de los denominados elementos de contacto es fundamental cuando se desea estudiar la influencia de asientos diferenciales, especialmente en transiciones terraplén-estructura en las que la cuña de cimentación no llega hasta la base de cimentación de la estructura. Por otra parte, tener en cuenta los asientos del terraplén, es sumamente importante, cuando se desea realizar un análisis de degradación de la vía ya que su influencia en la interacción entre el vehículo y la vía es muy elevada, especialmente para valores altos de velocidad del tren. En cuanto a la influencia de las irregularidades de la vía, en los cálculos efectuados, se revela que su importancia es muy notable, siendo su influencia muy destacada cuanto mayor sea la velocidad del tren. En este punto cabe destacar la diferencia de resultados derivada de la consideración de perfiles de irregularidades de distinta naturaleza. Los resultados provenientes de considerar perfiles artificiales son en general muy elevados, siendo estos más apropiados para realizar estudios de otra índole, como por ejemplo de seguridad al descarrilamiento. Los resultados provenientes de perfiles reales, dados por diferentes Administradores ferroviarios, presentan resultados menos elevados y más propios del problema analizar. Su influencia en la interacción dinámica entre el vehículo y la vía es muy importante, especialmente para velocidades elevadas del tren. Además el fenómeno de degradación conocido como danza de traviesas, asociado a zonas de transición, es muy susceptible a la consideración de irregularidades de la vía, tal y como se desprende de los cálculos efectuados a largo plazo. The major development experienced by high speed in the main countries of the European Union, in the last 30 years, makes railway research one of the main references in the research field. It should also be mentioned that the emergence of the concept superhigh − speed makes research in the field of Railway Engineering continues to gain importance in major research centers in the countries in which this mode of transportation is already implemented or planned to be implemented. The characteristics that this transport has as rationale such as: effectiveness, efficiency, safety and comfort, may be compromised by several factors. The transition zones are defined in railway engineering as a region in which there is an abrupt change of track stiffness. This stiffness variation can affect the normal behavior for which the infrastructure has been designed, seriously compromising efficiency standards in the travel time, passenger comfort and significantly increasing the costs of track maintenance, if appropriate measures are not taken. In this thesis a detailed study of the transition zones has been performed, particularly of those in which there is a change in vertical stiffness of the track due to the presence of a reinforced concrete culvert. To perform such a study a numerical interaction analysis between the vehicle, the track and the structure has been developed. With this purpose a two-dimensional finite element model, experimentally calibrated, in a state of plane stress, has been used. The implemented numerical models have considered the effects of track irregularities and mechanical behavior of soil-structure interface, with the objective of reproducing as accurately as possible the dynamic interaction between the vehicle the track and the structure. Other effects such as the influence of train speed and differential settlement, due to secondary consolidation of the embankments on both sides of culvert, have also been analyzed. In this work, the interaction analysis has been carried out in two different phases. In the first part a simple interaction due to the passage of a bogie of a Eurostar train has been considered. Calculations derived from this phase have been named short-term analysis. In the second part, a multi-load assessment considering an Eurostar train bogie moving along the transition zone, has been performed. The objective here is to simulate a degradation process in which vertical deformation of the ballast layer was considered. Calculations derived from this phase have been named long-term analysis. The analyzed results show that the use of so-called contact elements is essential when one wants to analyze the influence of differential settlements, especially in embankment-structure transitions in which the wedge-shaped backfill does not reach the foundation base of the structure. Moreover, considering embankment settlement is extremely important when it is desired to perform an analysis of track degradation. In these cases the influence on the interaction behaviour between the vehicle and the track is very high, especially for higher values of speed train. Regarding the influence of the track irregularities, this study has proven that the track’s dynamic response is heavily influenced by the irregularity profile and that this influence is more important for higher train velocities. It should also be noted that the difference in results derived from consideration of irregularities profiles of different nature. The results coming from artificial profiles are generally very high, these might be more appropriate in order to study other effects, such as derailment safety. Results from real profiles, given by the monitoring works of different rail Managers, are softer and they fit better to the context of this thesis. The influence of irregularity profiles on the dynamic interaction between the train and the track is very important, especially for high-speeds of the train. Furthermore, the degradation phenomenon known as hanging sleepers, associated with transition zones, is very susceptible to the consideration of track irregularities, as it can be concluded from the long-term analysis.
Resumo:
In this paper, we consider the problem of autonomous navigation of multirotor platforms in GPS-denied environments. The focus of this work is on safe navigation based on unperfect odometry measurements, such as on-board optical flow measurements. The multirotor platform is modeled as a flying object with specific kinematic constraints that must be taken into account in order to obtain successful results. A navigation controller is proposed featuring a set of configurable parameters that allow, for instance, to have a configuration setup for fast trajectory following, and another to soften the control laws and make the vehicle navigation more precise and slow whenever necessary. The proposed controller has been successfully implemented in two different multirotor platforms with similar sensoring capabilities showing the openness and tolerance of the approach. This research is focused around the Computer Vision Group's objective of applying multirotor vehicles to civilian service applications. The presented work was implemented to compete in the International Micro Air Vehicle Conference and Flight Competition IMAV 2012, gaining two awards: the Special Award on "Best Automatic Performance - IMAV 2012" and the second overall prize in the participating category "Indoor Flight Dynamics - Rotary Wing MAV". Most of the code related to the present work is available as two open-source projects hosted in GitHub.
Resumo:
La mejora de la calidad del aire es una tarea eminentemente interdisciplinaria. Dada la gran variedad de ciencias y partes involucradas, dicha mejora requiere de herramientas de evaluación simples y completamente integradas. La modelización para la evaluación integrada (integrated assessment modeling) ha demostrado ser una solución adecuada para la descripción de los sistemas de contaminación atmosférica puesto que considera cada una de las etapas involucradas: emisiones, química y dispersión atmosférica, impactos ambientales asociados y potencial de disminución. Varios modelos de evaluación integrada ya están disponibles a escala continental, cubriendo cada una de las etapas antesmencionadas, siendo el modelo GAINS (Greenhouse Gas and Air Pollution Interactions and Synergies) el más reconocido y usado en el contexto europeo de toma de decisiones medioambientales. Sin embargo, el manejo de la calidad del aire a escala nacional/regional dentro del marco de la evaluación integrada es deseable. Esto sin embargo, no se lleva a cabo de manera satisfactoria con modelos a escala europea debido a la falta de resolución espacial o de detalle en los datos auxiliares, principalmente los inventarios de emisión y los patrones meteorológicos, entre otros. El objetivo de esta tesis es presentar los desarrollos en el diseño y aplicación de un modelo de evaluación integrada especialmente concebido para España y Portugal. El modelo AERIS (Atmospheric Evaluation and Research Integrated system for Spain) es capaz de cuantificar perfiles de concentración para varios contaminantes (NO2, SO2, PM10, PM2,5, NH3 y O3), el depósito atmosférico de especies de azufre y nitrógeno así como sus impactos en cultivos, vegetación, ecosistemas y salud como respuesta a cambios porcentuales en las emisiones de sectores relevantes. La versión actual de AERIS considera 20 sectores de emisión, ya sea equivalentes a sectores individuales SNAP o macrosectores, cuya contribución a los niveles de calidad del aire, depósito e impactos han sido modelados a través de matrices fuentereceptor (SRMs). Estas matrices son constantes de proporcionalidad que relacionan cambios en emisiones con diferentes indicadores de calidad del aire y han sido obtenidas a través de parametrizaciones estadísticas de un modelo de calidad del aire (AQM). Para el caso concreto de AERIS, su modelo de calidad del aire “de origen” consistió en el modelo WRF para la meteorología y en el modelo CMAQ para los procesos químico-atmosféricos. La cuantificación del depósito atmosférico, de los impactos en ecosistemas, cultivos, vegetación y salud humana se ha realizado siguiendo las metodologías estándar establecidas bajo los marcos internacionales de negociación, tales como CLRTAP. La estructura de programación está basada en MATLAB®, permitiendo gran compatibilidad con software típico de escritorio comoMicrosoft Excel® o ArcGIS®. En relación con los niveles de calidad del aire, AERIS es capaz de proveer datos de media anual y media mensual, así como el 19o valor horario más alto paraNO2, el 25o valor horario y el 4o valor diario más altos para SO2, el 36o valor diario más alto para PM10, el 26o valor octohorario más alto, SOMO35 y AOT40 para O3. En relación al depósito atmosférico, el depósito acumulado anual por unidad de area de especies de nitrógeno oxidado y reducido al igual que de azufre pueden ser determinados. Cuando los valores anteriormente mencionados se relacionan con características del dominio modelado tales como uso de suelo, cubiertas vegetales y forestales, censos poblacionales o estudios epidemiológicos, un gran número de impactos puede ser calculado. Centrándose en los impactos a ecosistemas y suelos, AERIS es capaz de estimar las superaciones de cargas críticas y las superaciones medias acumuladas para especies de nitrógeno y azufre. Los daños a bosques se calculan como una superación de los niveles críticos de NO2 y SO2 establecidos. Además, AERIS es capaz de cuantificar daños causados por O3 y SO2 en vid, maíz, patata, arroz, girasol, tabaco, tomate, sandía y trigo. Los impactos en salud humana han sido modelados como consecuencia de la exposición a PM2,5 y O3 y cuantificados como pérdidas en la esperanza de vida estadística e indicadores de mortalidad prematura. La exactitud del modelo de evaluación integrada ha sido contrastada estadísticamente con los resultados obtenidos por el modelo de calidad del aire convencional, exhibiendo en la mayoría de los casos un buen nivel de correspondencia. Debido a que la cuantificación de los impactos no es llevada a cabo directamente por el modelo de calidad del aire, un análisis de credibilidad ha sido realizado mediante la comparación de los resultados de AERIS con los de GAINS para un escenario de emisiones determinado. El análisis reveló un buen nivel de correspondencia en las medias y en las distribuciones probabilísticas de los conjuntos de datos. Las pruebas de verificación que fueron aplicadas a AERIS sugieren que los resultados son suficientemente consistentes para ser considerados como razonables y realistas. En conclusión, la principal motivación para la creación del modelo fue el producir una herramienta confiable y a la vez simple para el soporte de las partes involucradas en la toma de decisiones, de cara a analizar diferentes escenarios “y si” con un bajo coste computacional. La interacción con políticos y otros actores dictó encontrar un compromiso entre la complejidad del modeladomedioambiental con el carácter conciso de las políticas, siendo esto algo que AERIS refleja en sus estructuras conceptual y computacional. Finalmente, cabe decir que AERIS ha sido creado para su uso exclusivo dentro de un marco de evaluación y de ninguna manera debe ser considerado como un sustituto de los modelos de calidad del aire ordinarios. ABSTRACT Improving air quality is an eminently inter-disciplinary task. The wide variety of sciences and stakeholders that are involved call for having simple yet fully-integrated and reliable evaluation tools available. Integrated AssessmentModeling has proved to be a suitable solution for the description of air pollution systems due to the fact that it considers each of the involved stages: emissions, atmospheric chemistry, dispersion, environmental impacts and abatement potentials. Some integrated assessment models are available at European scale that cover each of the before mentioned stages, being the Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS) model the most recognized and widely-used within a European policy-making context. However, addressing air quality at the national/regional scale under an integrated assessment framework is desirable. To do so, European-scale models do not provide enough spatial resolution or detail in their ancillary data sources, mainly emission inventories and local meteorology patterns as well as associated results. The objective of this dissertation is to present the developments in the design and application of an Integrated Assessment Model especially conceived for Spain and Portugal. The Atmospheric Evaluation and Research Integrated system for Spain (AERIS) is able to quantify concentration profiles for several pollutants (NO2, SO2, PM10, PM2.5, NH3 and O3), the atmospheric deposition of sulfur and nitrogen species and their related impacts on crops, vegetation, ecosystems and health as a response to percentual changes in the emissions of relevant sectors. The current version of AERIS considers 20 emission sectors, either corresponding to individual SNAP sectors or macrosectors, whose contribution to air quality levels, deposition and impacts have been modeled through the use of source-receptor matrices (SRMs). Thesematrices are proportionality constants that relate emission changes with different air quality indicators and have been derived through statistical parameterizations of an air qualitymodeling system (AQM). For the concrete case of AERIS, its parent AQM relied on the WRF model for meteorology and on the CMAQ model for atmospheric chemical processes. The quantification of atmospheric deposition, impacts on ecosystems, crops, vegetation and human health has been carried out following the standard methodologies established under international negotiation frameworks such as CLRTAP. The programming structure isMATLAB ® -based, allowing great compatibility with typical software such as Microsoft Excel ® or ArcGIS ® Regarding air quality levels, AERIS is able to provide mean annual andmean monthly concentration values, as well as the indicators established in Directive 2008/50/EC, namely the 19th highest hourly value for NO2, the 25th highest daily value and the 4th highest hourly value for SO2, the 36th highest daily value of PM10, the 26th highest maximum 8-hour daily value, SOMO35 and AOT40 for O3. Regarding atmospheric deposition, the annual accumulated deposition per unit of area of species of oxidized and reduced nitrogen as well as sulfur can be estimated. When relating the before mentioned values with specific characteristics of the modeling domain such as land use, forest and crops covers, population counts and epidemiological studies, a wide array of impacts can be calculated. When focusing on impacts on ecosystems and soils, AERIS is able to estimate critical load exceedances and accumulated average exceedances for nitrogen and sulfur species. Damage on forests is estimated as an exceedance of established critical levels of NO2 and SO2. Additionally, AERIS is able to quantify damage caused by O3 and SO2 on grapes, maize, potato, rice, sunflower, tobacco, tomato, watermelon and wheat. Impacts on human health aremodeled as a consequence of exposure to PM2.5 and O3 and quantified as losses in statistical life expectancy and premature mortality indicators. The accuracy of the IAM has been tested by statistically contrasting the obtained results with those yielded by the conventional AQM, exhibiting in most cases a good agreement level. Due to the fact that impacts cannot be directly produced by the AQM, a credibility analysis was carried out for the outputs of AERIS for a given emission scenario by comparing them through probability tests against the performance of GAINS for the same scenario. This analysis revealed a good correspondence in the mean behavior and the probabilistic distributions of the datasets. The verification tests that were applied to AERIS suggest that results are consistent enough to be credited as reasonable and realistic. In conclusion, the main reason thatmotivated the creation of this model was to produce a reliable yet simple screening tool that would provide decision and policy making support for different “what-if” scenarios at a low computing cost. The interaction with politicians and other stakeholders dictated that reconciling the complexity of modeling with the conciseness of policies should be reflected by AERIS in both, its conceptual and computational structures. It should be noted however, that AERIS has been created under a policy-driven framework and by no means should be considered as a substitute of the ordinary AQM.
Resumo:
Las futuras misiones para misiles aire-aire operando dentro de la atmósfera requieren la interceptación de blancos a mayores velocidades y más maniobrables, incluyendo los esperados vehículos aéreos de combate no tripulados. La intercepción tiene que lograrse desde cualquier ángulo de lanzamiento. Una de las principales discusiones en la tecnología de misiles en la actualidad es cómo satisfacer estos nuevos requisitos incrementando la capacidad de maniobra del misil y en paralelo, a través de mejoras en los métodos de guiado y control modernos. Esta Tesis aborda estos dos objetivos simultáneamente, al proponer un diseño integrando el guiado y el control de vuelo (autopiloto) y aplicarlo a misiles con control aerodinámico simultáneo en canard y cola. Un primer avance de los resultados obtenidos ha sido publicado recientemente en el Journal of Aerospace Engineering, en Abril de 2015, [Ibarrondo y Sanz-Aranguez, 2015]. El valor del diseño integrado obtenido es que permite al misil cumplir con los requisitos operacionales mencionados empleando únicamente control aerodinámico. El diseño propuesto se compara favorablemente con esquemas más tradicionales, consiguiendo menores distancias de paso al blanco y necesitando de menores esfuerzos de control incluso en presencia de ruidos. En esta Tesis se demostrará cómo la introducción del doble mando, donde tanto el canard como las aletas de cola son móviles, puede mejorar las actuaciones de un misil existente. Comparado con un misil con control en cola, el doble control requiere sólo introducir dos servos adicionales para accionar los canards también en guiñada y cabeceo. La sección de cola será responsable de controlar el misil en balanceo mediante deflexiones diferenciales de los controles. En el caso del doble mando, la complicación añadida es que los vórtices desprendidos de los canards se propagan corriente abajo y pueden incidir sobre las superficies de cola, alterando sus características de control. Como un primer aporte, se ha desarrollado un modelo analítico completo para la aerodinámica no lineal de un misil con doble control, incluyendo la caracterización de este efecto de acoplamiento aerodinámico. Hay dos modos de funcionamiento en picado y guiñada para un misil de doble mando: ”desviación” y ”opuesto”. En modo ”desviación”, los controles actúan en la misma dirección, generando un cambio inmediato en la sustentación y produciendo un movimiento de translación en el misil. La respuesta es rápida, pero en el modo ”desviación” los misiles con doble control pueden tener dificultades para alcanzar grandes ángulos de ataque y altas aceleraciones laterales. Cuando los controles actúan en direcciones opuestas, el misil rota y el ángulo de ataque del fuselaje se incrementa para generar mayores aceleraciones en estado estacionario, aunque el tiempo de respuesta es mayor. Con el modelo aerodinámico completo, es posible obtener una parametrización dependiente de los estados de la dinámica de corto periodo del misil. Debido al efecto de acoplamiento entre los controles, la respuesta en bucle abierto no depende linealmente de los controles. El autopiloto se optimiza para obtener la maniobra requerida por la ley de guiado sin exceder ninguno de los límites aerodinámicos o mecánicos del misil. Una segunda contribución de la tesis es el desarrollo de un autopiloto con múltiples entradas de control y que integra la aerodinámica no lineal, controlando los tres canales de picado, guiñada y cabeceo de forma simultánea. Las ganancias del autopiloto dependen de los estados del misil y se calculan a cada paso de integración mediante la resolución de una ecuación de Riccati de orden 21x21. Las ganancias obtenidas son sub-óptimas, debido a que una solución completa de la ecuación de Hamilton-Jacobi-Bellman no puede obtenerse de manera práctica, y se asumen ciertas simplificaciones. Se incorpora asimismo un mecanismo que permite acelerar la respuesta en caso necesario. Como parte del autopiloto, se define una estrategia para repartir el esfuerzo de control entre el canard y la cola. Esto se consigue mediante un controlador aumentado situado antes del bucle de optimización, que minimiza el esfuerzo total de control para maniobrar. Esta ley de alimentación directa mantiene al misil cerca de sus condiciones de equilibrio, garantizando una respuesta transitoria adecuada. El controlador no lineal elimina la respuesta de fase no-mínima característica de la cola. En esta Tesis se consideran dos diseños para el guiado y control, el control en Doble-Lazo y el control Integrado. En la aproximación de Doble-Lazo, el autopiloto se sitúa dentro de un bucle interior y se diseña independientemente del guiado, que conforma el bucle más exterior del control. Esta estructura asume que existe separación espectral entre los dos, esto es, que los tiempos de respuesta del autopiloto son mucho mayores que los tiempos característicos del guiado. En el estudio se combina el autopiloto desarrollado con una ley de guiado óptimo. Los resultados obtenidos demuestran que se consiguen aumentos muy importantes en las actuaciones frente a misiles con control canard o control en cola, y que la interceptación, cuando se lanza cerca del curso de colisión, se consigue desde cualquier ángulo alrededor del blanco. Para el misil de doble mando, la estrategia óptima resulta en utilizar el modo de control opuesto en la aproximación al blanco y utilizar el modo de desviación justo antes del impacto. Sin embargo la lógica de doble bucle no consigue el impacto cuando hay desviaciones importantes con respecto al curso de colisión. Una de las razones es que parte de la demanda de guiado se pierde, ya que el misil solo es capaz de modificar su aceleración lateral, y no tiene control sobre su aceleración axial, a no ser que incorpore un motor de empuje regulable. La hipótesis de separación mencionada, y que constituye la base del Doble-Bucle, puede no ser aplicable cuando la dinámica del misil es muy alta en las proximidades del blanco. Si se combinan el guiado y el autopiloto en un único bucle, la información de los estados del misil está disponible para el cálculo de la ley de guiado, y puede calcularse la estrategia optima de guiado considerando las capacidades y la actitud del misil. Una tercera contribución de la Tesis es la resolución de este segundo diseño, la integración no lineal del guiado y del autopiloto (IGA) para el misil de doble control. Aproximaciones anteriores en la literatura han planteado este sistema en ejes cuerpo, resultando en un sistema muy inestable debido al bajo amortiguamiento del misil en cabeceo y guiñada. Las simplificaciones que se tomaron también causan que el misil se deslice alrededor del blanco y no consiga la intercepción. En nuestra aproximación el problema se plantea en ejes inerciales y se recurre a la dinámica de los cuaterniones, eliminado estos inconvenientes. No se limita a la dinámica de corto periodo del misil, porque se construye incluyendo de modo explícito la velocidad dentro del bucle de optimización. La formulación resultante en el IGA es independiente de la maniobra del blanco, que sin embargo se ha de incluir en el cálculo del modelo en Doble-bucle. Un típico inconveniente de los sistemas integrados con controlador proporcional, es el problema de las escalas. Los errores de guiado dominan sobre los errores de posición del misil y saturan el controlador, provocando la pérdida del misil. Este problema se ha tratado aquí con un controlador aumentado previo al bucle de optimización, que define un estado de equilibrio local para el sistema integrado, que pasa a actuar como un regulador. Los criterios de actuaciones para el IGA son los mismos que para el sistema de Doble-Bucle. Sin embargo el problema matemático resultante es muy complejo. El problema óptimo para tiempo finito resulta en una ecuación diferencial de Riccati con condiciones terminales, que no puede resolverse. Mediante un cambio de variable y la introducción de una matriz de transición, este problema se transforma en una ecuación diferencial de Lyapunov que puede resolverse mediante métodos numéricos. La solución resultante solo es aplicable en un entorno cercano del blanco. Cuando la distancia entre misil y blanco es mayor, se desarrolla una solución aproximada basada en la solución de una ecuación algebraica de Riccati para cada paso de integración. Los resultados que se han obtenido demuestran, a través de análisis numéricos en distintos escenarios, que la solución integrada es mejor que el sistema de Doble-Bucle. Las trayectorias resultantes son muy distintas. El IGA preserva el guiado del misil y consigue maximizar el uso de la propulsión, consiguiendo la interceptación del blanco en menores tiempos de vuelo. El sistema es capaz de lograr el impacto donde el Doble-Bucle falla, y además requiere un orden menos de magnitud en la cantidad de cálculos necesarios. El efecto de los ruidos radar, datos discretos y errores del radomo se investigan. El IGA es más robusto, resultando menos afectado por perturbaciones que el Doble- Bucle, especialmente porque el núcleo de optimización en el IGA es independiente de la maniobra del blanco. La estimación de la maniobra del blanco es siempre imprecisa y contaminada por ruido, y degrada la precisión de la solución de Doble-Bucle. Finalmente, como una cuarta contribución, se demuestra que el misil con guiado IGA es capaz de realizar una maniobra de defensa contra un blanco que ataque por su cola, sólo con control aerodinámico. Las trayectorias estudiadas consideran una fase pre-programada de alta velocidad de giro, manteniendo siempre el misil dentro de su envuelta de vuelo. Este procedimiento no necesita recurrir a soluciones técnicamente más complejas como el control vectorial del empuje o control por chorro para ejecutar esta maniobra. En todas las demostraciones matemáticas se utiliza el producto de Kronecker como una herramienta practica para manejar las parametrizaciones dependientes de variables, que resultan en matrices de grandes dimensiones. ABSTRACT Future missions for air to air endo-atmospheric missiles require the interception of targets with higher speeds and more maneuverable, including forthcoming unmanned supersonic combat vehicles. The interception will need to be achieved from any angle and off-boresight launch conditions. One of the most significant discussions in missile technology today is how to satisfy these new operational requirements by increasing missile maneuvering capabilities and in parallel, through the development of more advanced guidance and control methods. This Thesis addresses these two objectives by proposing a novel optimal integrated guidance and autopilot design scheme, applicable to more maneuverable missiles with forward and rearward aerodynamic controls. A first insight of these results have been recently published in the Journal of Aerospace Engineering in April 2015, [Ibarrondo and Sanz-Aránguez, 2015]. The value of this integrated solution is that it allows the missile to comply with the aforementioned requirements only by applying aerodynamic control. The proposed design is compared against more traditional guidance and control approaches with positive results, achieving reduced control efforts and lower miss distances with the integrated logic even in the presence of noises. In this Thesis it will be demonstrated how the dual control missile, where canard and tail fins are both movable, can enhance the capabilities of an existing missile airframe. Compared to a tail missile, dual control only requires two additional servos to actuate the canards in pitch and yaw. The tail section will be responsible to maintain the missile stabilized in roll, like in a classic tail missile. The additional complexity is that the vortices shed from the canard propagate downstream where they interact with the tail surfaces, altering the tail expected control characteristics. These aerodynamic phenomena must be properly described, as a preliminary step, with high enough precision for advanced guidance and control studies. As a first contribution we have developed a full analytical model of the nonlinear aerodynamics of a missile with dual control, including the characterization of this cross-control coupling effect. This development has been produced from a theoretical model validated with reliable practical data obtained from wind tunnel experiments available in the scientific literature, complement with computer fluid dynamics and semi-experimental methods. There are two modes of operating a missile with forward and rear controls, ”divert” and ”opposite” modes. In divert mode, controls are deflected in the same direction, generating an increment in direct lift and missile translation. Response is fast, but in this mode, dual control missiles may have difficulties in achieving large angles of attack and high level of lateral accelerations. When controls are deflected in opposite directions (opposite mode) the missile airframe rotates and the body angle of attack is increased to generate greater accelerations in steady-state, although the response time is larger. With the aero-model, a state dependent parametrization of the dual control missile short term dynamics can be obtained. Due to the cross-coupling effect, the open loop dynamics for the dual control missile is not linearly dependent of the fin positions. The short term missile dynamics are blended with the servo system to obtain an extended autopilot model, where the response is linear with the control fins turning rates, that will be the control variables. The flight control loop is optimized to achieve the maneuver required by the guidance law without exceeding any of the missile aerodynamic or mechanical limitations. The specific aero-limitations and relevant performance indicators for the dual control are set as part of the analysis. A second contribution of this Thesis is the development of a step-tracking multi-input autopilot that integrates non-linear aerodynamics. The designed dual control missile autopilot is a full three dimensional autopilot, where roll, pitch and yaw are integrated, calculating command inputs simultaneously. The autopilot control gains are state dependent, and calculated at each integration step solving a matrix Riccati equation of order 21x21. The resulting gains are sub-optimal as a full solution for the Hamilton-Jacobi-Bellman equation cannot be resolved in practical terms and some simplifications are taken. Acceleration mechanisms with an λ-shift is incorporated in the design. As part of the autopilot, a strategy is defined for proper allocation of control effort between canard and tail channels. This is achieved with an augmented feed forward controller that minimizes the total control effort of the missile to maneuver. The feedforward law also maintains the missile near trim conditions, obtaining a well manner response of the missile. The nonlinear controller proves to eliminate the non-minimum phase effect of the tail. Two guidance and control designs have been considered in this Thesis: the Two- Loop and the Integrated approaches. In the Two-Loop approach, the autopilot is placed in an inner loop and designed separately from an outer guidance loop. This structure assumes that spectral separation holds, meaning that the autopilot response times are much higher than the guidance command updates. The developed nonlinear autopilot is linked in the study to an optimal guidance law. Simulations are carried on launching close to collision course against supersonic and highly maneuver targets. Results demonstrate a large boost in performance provided by the dual control versus more traditional canard and tail missiles, where interception with the dual control close to collision course is achieved form 365deg all around the target. It is shown that for the dual control missile the optimal flight strategy results in using opposite control in its approach to target and quick corrections with divert just before impact. However the Two-Loop logic fails to achieve target interception when there are large deviations initially from collision course. One of the reasons is that part of the guidance command is not followed, because the missile is not able to control its axial acceleration without a throttleable engine. Also the separation hypothesis may not be applicable for a high dynamic vehicle like a dual control missile approaching a maneuvering target. If the guidance and autopilot are combined into a single loop, the guidance law will have information of the missile states and could calculate the most optimal approach to the target considering the actual capabilities and attitude of the missile. A third contribution of this Thesis is the resolution of the mentioned second design, the non-linear integrated guidance and autopilot (IGA) problem for the dual control missile. Previous approaches in the literature have posed the problem in body axes, resulting in high unstable behavior due to the low damping of the missile, and have also caused the missile to slide around the target and not actually hitting it. The IGA system is posed here in inertial axes and quaternion dynamics, eliminating these inconveniences. It is not restricted to the missile short term dynamic, and we have explicitly included the missile speed as a state variable. The IGA formulation is also independent of the target maneuver model that is explicitly included in the Two-loop optimal guidance law model. A typical problem of the integrated systems with a proportional control law is the problem of scales. The guidance errors are larger than missile state errors during most of the flight and result in high gains, control saturation and loss of control. It has been addressed here with an integrated feedforward controller that defines a local equilibrium state at each flight point and the controller acts as a regulator to minimize the IGA states excursions versus the defined feedforward state. The performance criteria for the IGA are the same as in the Two-Loop case. However the resulting optimization problem is mathematically very complex. The optimal problem in a finite-time horizon results in an irresoluble state dependent differential Riccati equation with terminal conditions. With a change of variable and the introduction of a transition matrix, the equation is transformed into a time differential Lyapunov equation that can be solved with known numerical methods in real time. This solution results range limited, and applicable when the missile is in a close neighborhood of the target. For larger ranges, an approximate solution is used, obtained from solution of an algebraic matrix Riccati equation at each integration step. The results obtained show, by mean of several comparative numerical tests in diverse homing scenarios, than the integrated approach is a better solution that the Two- Loop scheme. Trajectories obtained are very different in the two cases. The IGA fully preserves the guidance command and it is able to maximize the utilization of the missile propulsion system, achieving interception with lower miss distances and in lower flight times. The IGA can achieve interception against off-boresight targets where the Two- Loop was not able to success. As an additional advantage, the IGA also requires one order of magnitude less calculations than the Two-Loop solution. The effects of radar noises, discrete radar data and radome errors are investigated. IGA solution is robust, and less affected by radar than the Two-Loop, especially because the target maneuvers are not part of the IGA core optimization loop. Estimation of target acceleration is always imprecise and noisy and degrade the performance of the two-Loop solution. The IGA trajectories are such that minimize the impact of radome errors in the guidance loop. Finally, as a fourth contribution, it is demonstrated that the missile with IGA guidance is capable of performing a defense against attacks from its rear hemisphere, as a tail attack, only with aerodynamic control. The studied trajectories have a preprogrammed high rate turn maneuver, maintaining the missile within its controllable envelope. This solution does not recur to more complex features in service today, like vector control of the missile thrust or side thrusters. In all the mathematical treatments and demonstrations, the Kronecker product has been introduced as a practical tool to handle the state dependent parametrizations that have resulted in very high order matrix equations.
Resumo:
La industria de la energía eólica marina ha crecido de forma significativa durante los últimos 15 años, y se espera que siga creciendo durante los siguientes. La construcción de torres en aguas cada vez más profundas y el aumento en potencia y tamaño de las turbinas han creado la necesidad de diseñar estructuras de soporte cada vez más fiables y optimizadas, lo que requiere un profundo conocimiento de su comportamiento. Este trabajo se centra en la respuesta dinámica de una turbina marina con cimentación tipo monopilote y sobre la que actúa la fuerza del viento. Se han realizado cálculos con distintas propiedades del suelo para cubrir un rango de rigideces que va desde una arena muy suelta a una muy densa. De este modo se ha analizado la influencia que tiene la rigidez del suelo en el comportamiento de la estructura. Se han llevado a cabo análisis estáticos y dinámicos en un modelo de elementos finitos implementado en Abaqus. El desplazamiento en la cabeza de la torre y la tensión en su base se han obtenido en función de la rigidez del suelo, y con ellos se ha calculado la amplificación dinámica producida cuando la frecuencia natural del sistema suelo‐cimentación torre se aproxima a la frecuencia de la carga. Dos diferentes enfoques a la hora de modelizar el suelo se han comparado: uno utilizando elementos continuos y otro utilizando muelles elásticos no lineales. Por último, un análisis de fiabilidad se ha llevado a cabo con un modelo analítico para calcular la probabilidad de resonancia del sistema, en el que se han considerado las propiedades de rigidez del suelo como variables aleatorias. Offshore wind energy industry has experienced a significant growth over the past 15 years, and it is expected to continue its growth in the coming years. The expansion to increasingly deep waters and the rise in power and size of the turbines have led to a need for more reliable and optimized support designs, which requires an extensive knowledge of the behaviour of these structures. This work focuses on the dynamic response of an offshore wind turbine founded on a monopile and subjected to wind loading. Different soil properties have been considered in order to cover the range of stiffness from a very loose to a very dense sand. In this way, the influence of stiffness on the structure behaviour has been assessed. Static and dynamic analyses have been carried out by means of a finite element model implemented in Abaqus. Head displacement and stress at the tower base have been obtained as functions of soil stiffness, and they have been used to calculate the dynamic amplification that is produced when the natural frequency of the system soil‐foundation‐tower approaches the load frequency. Two different approaches of soil modelling have been compared: soil modelled as a continuum and soil simulated with non linear elastic springs. Finally, a reliability analysis to assess the probability of resonance has been performed with an analytical model, in which soil stiffness properties are considered as stochastic variables.
Resumo:
In recent decades, full electric and hybrid electric vehicles have emerged as an alternative to conventional cars due to a range of factors, including environmental and economic aspects. These vehicles are the result of considerable efforts to seek ways of reducing the use of fossil fuel for vehicle propulsion. Sophisticated technologies such as hybrid and electric powertrains require careful study and optimization. Mathematical models play a key role at this point. Currently, many advanced mathematical analysis tools, as well as computer applications have been built for vehicle simulation purposes. Given the great interest of hybrid and electric powertrains, along with the increasing importance of reliable computer-based models, the author decided to integrate both aspects in the research purpose of this work. Furthermore, this is one of the first final degree projects held at the ETSII (Higher Technical School of Industrial Engineers) that covers the study of hybrid and electric propulsion systems. The present project is based on MBS3D 2.0, a specialized software for the dynamic simulation of multibody systems developed at the UPM Institute of Automobile Research (INSIA). Automobiles are a clear example of complex multibody systems, which are present in nearly every field of engineering. The work presented here benefits from the availability of MBS3D software. This program has proven to be a very efficient tool, with a highly developed underlying mathematical formulation. On this basis, the focus of this project is the extension of MBS3D features in order to be able to perform dynamic simulations of hybrid and electric vehicle models. This requires the joint simulation of the mechanical model of the vehicle, together with the model of the hybrid or electric powertrain. These sub-models belong to completely different physical domains. In fact the powertrain consists of energy storage systems, electrical machines and power electronics, connected to purely mechanical components (wheels, suspension, transmission, clutch…). The challenge today is to create a global vehicle model that is valid for computer simulation. Therefore, the main goal of this project is to apply co-simulation methodologies to a comprehensive model of an electric vehicle, where sub-models from different areas of engineering are coupled. The created electric vehicle (EV) model consists of a separately excited DC electric motor, a Li-ion battery pack, a DC/DC chopper converter and a multibody vehicle model. Co-simulation techniques allow car designers to simulate complex vehicle architectures and behaviors, which are usually difficult to implement in a real environment due to safety and/or economic reasons. In addition, multi-domain computational models help to detect the effects of different driving patterns and parameters and improve the models in a fast and effective way. Automotive designers can greatly benefit from a multidisciplinary approach of new hybrid and electric vehicles. In this case, the global electric vehicle model includes an electrical subsystem and a mechanical subsystem. The electrical subsystem consists of three basic components: electric motor, battery pack and power converter. A modular representation is used for building the dynamic model of the vehicle drivetrain. This means that every component of the drivetrain (submodule) is modeled separately and has its own general dynamic model, with clearly defined inputs and outputs. Then, all the particular submodules are assembled according to the drivetrain configuration and, in this way, the power flow across the components is completely determined. Dynamic models of electrical components are often based on equivalent circuits, where Kirchhoff’s voltage and current laws are applied to draw the algebraic and differential equations. Here, Randles circuit is used for dynamic modeling of the battery and the electric motor is modeled through the analysis of the equivalent circuit of a separately excited DC motor, where the power converter is included. The mechanical subsystem is defined by MBS3D equations. These equations consider the position, velocity and acceleration of all the bodies comprising the vehicle multibody system. MBS3D 2.0 is entirely written in MATLAB and the structure of the program has been thoroughly studied and understood by the author. MBS3D software is adapted according to the requirements of the applied co-simulation method. Some of the core functions are modified, such as integrator and graphics, and several auxiliary functions are added in order to compute the mathematical model of the electrical components. By coupling and co-simulating both subsystems, it is possible to evaluate the dynamic interaction among all the components of the drivetrain. ‘Tight-coupling’ method is used to cosimulate the sub-models. This approach integrates all subsystems simultaneously and the results of the integration are exchanged by function-call. This means that the integration is done jointly for the mechanical and the electrical subsystem, under a single integrator and then, the speed of integration is determined by the slower subsystem. Simulations are then used to show the performance of the developed EV model. However, this project focuses more on the validation of the computational and mathematical tool for electric and hybrid vehicle simulation. For this purpose, a detailed study and comparison of different integrators within the MATLAB environment is done. Consequently, the main efforts are directed towards the implementation of co-simulation techniques in MBS3D software. In this regard, it is not intended to create an extremely precise EV model in terms of real vehicle performance, although an acceptable level of accuracy is achieved. The gap between the EV model and the real system is filled, in a way, by introducing the gas and brake pedals input, which reflects the actual driver behavior. This input is included directly in the differential equations of the model, and determines the amount of current provided to the electric motor. For a separately excited DC motor, the rotor current is proportional to the traction torque delivered to the car wheels. Therefore, as it occurs in the case of real vehicle models, the propulsion torque in the mathematical model is controlled through acceleration and brake pedal commands. The designed transmission system also includes a reduction gear that adapts the torque coming for the motor drive and transfers it. The main contribution of this project is, therefore, the implementation of a new calculation path for the wheel torques, based on performance characteristics and outputs of the electric powertrain model. Originally, the wheel traction and braking torques were input to MBS3D through a vector directly computed by the user in a MATLAB script. Now, they are calculated as a function of the motor current which, in turn, depends on the current provided by the battery pack across the DC/DC chopper converter. The motor and battery currents and voltages are the solutions of the electrical ODE (Ordinary Differential Equation) system coupled to the multibody system. Simultaneously, the outputs of MBS3D model are the position, velocity and acceleration of the vehicle at all times. The motor shaft speed is computed from the output vehicle speed considering the wheel radius, the gear reduction ratio and the transmission efficiency. This motor shaft speed, somehow available from MBS3D model, is then introduced in the differential equations corresponding to the electrical subsystem. In this way, MBS3D and the electrical powertrain model are interconnected and both subsystems exchange values resulting as expected with tight-coupling approach.When programming mathematical models of complex systems, code optimization is a key step in the process. A way to improve the overall performance of the integration, making use of C/C++ as an alternative programming language, is described and implemented. Although this entails a higher computational burden, it leads to important advantages regarding cosimulation speed and stability. In order to do this, it is necessary to integrate MATLAB with another integrated development environment (IDE), where C/C++ code can be generated and executed. In this project, C/C++ files are programmed in Microsoft Visual Studio and the interface between both IDEs is created by building C/C++ MEX file functions. These programs contain functions or subroutines that can be dynamically linked and executed from MATLAB. This process achieves reductions in simulation time up to two orders of magnitude. The tests performed with different integrators, also reveal the stiff character of the differential equations corresponding to the electrical subsystem, and allow the improvement of the cosimulation process. When varying the parameters of the integration and/or the initial conditions of the problem, the solutions of the system of equations show better dynamic response and stability, depending on the integrator used. Several integrators, with variable and non-variable step-size, and for stiff and non-stiff problems are applied to the coupled ODE system. Then, the results are analyzed, compared and discussed. From all the above, the project can be divided into four main parts: 1. Creation of the equation-based electric vehicle model; 2. Programming, simulation and adjustment of the electric vehicle model; 3. Application of co-simulation methodologies to MBS3D and the electric powertrain subsystem; and 4. Code optimization and study of different integrators. Additionally, in order to deeply understand the context of the project, the first chapters include an introduction to basic vehicle dynamics, current classification of hybrid and electric vehicles and an explanation of the involved technologies such as brake energy regeneration, electric and non-electric propulsion systems for EVs and HEVs (hybrid electric vehicles) and their control strategies. Later, the problem of dynamic modeling of hybrid and electric vehicles is discussed. The integrated development environment and the simulation tool are also briefly described. The core chapters include an explanation of the major co-simulation methodologies and how they have been programmed and applied to the electric powertrain model together with the multibody system dynamic model. Finally, the last chapters summarize the main results and conclusions of the project and propose further research topics. In conclusion, co-simulation methodologies are applicable within the integrated development environments MATLAB and Visual Studio, and the simulation tool MBS3D 2.0, where equation-based models of multidisciplinary subsystems, consisting of mechanical and electrical components, are coupled and integrated in a very efficient way.