870 resultados para Heat Solar Energy
Resumo:
Among the armoury of photovoltaic materials, thin film heterojunction photovoltaics continue to be a promising candidate for solar energy conversion delivering a vast scope in terms of device design and fabrication. Their production does not require expensive semiconductor substrates and high temperature device processing, which allows reduced cost per unit area while maintaining reasonable efficiency. In this regard, superstrate CdTe/CdS solar cells are extensively investigated because of their suitable bandgap alignments, cost effective methods of production at large scales and stability against proton/electron irradiation. The conversion efficiencies in the range of 6-20% are achieved by structuring the device by varying the absorber/window layer thickness, junction activation/annealing steps, with more suitable front/back contacts, preparation techniques, doping with foreign ions, etc. This review focuses on fundamental and critical aspects like: (a) choice of CdS window layer and CdTe absorber layer; (b) drawbacks associated with the device including environmental problems, optical absorption losses and back contact barriers; (c) structural dynamics at CdS-CdTe interface; (d) influence of junction activation process by CdCl2 or HCF2Cl treatment; (e) interface and grain boundary passivation effects; (f) device degradation due to impurity diffusion and stress; (g) fabrication with suitable front and back contacts; (h) chemical processes occurring at various interfaces; (i) strategies and modifications developed to improve their efficiency. The complexity involved in understanding the multiple aspects of tuning the solar cell efficiency is reviewed in detail by considering the individual contribution from each component of the device. It is expected that this review article will enrich the materials aspects of CdTe/CdS devices for solar energy conversion and stimulate further innovative research interest on this intriguing topic.
Resumo:
It is no exaggeration to state that the energy crisis is the most serious challenge that we face today. Among the strategies to gain access to reliable, renewable energy, the use of solar energy has clearly emerged as the most viable option. A promising direction in this context is artificial photosynthesis. In this article, we briefly describe the essential features of artificial photosynthesis in comparison with natural photosynthesis and point out the modest success that we have had in splitting water to produce oxygen and hydrogen, specially the latter.
Resumo:
Inhibition of electron-hole pair recombination is the most desirable solution for stimulating photocatalytic activity in semiconductor nanostructures. To implement this, herein we study the photocatalytic efficiency of elemental Au, Pd and bimetallic AuPd nanoalloy decorated pristine and reduced graphene oxide (RGO) hybridized ZnO nanorods for degrading rhodamine 6G (R6G) dye. Fabrication of Au, Pd and AuPd nanoalloy on pristine and RGO modified ZnO nanorods is simple and more importantly surfactant or polymer free. AuPd nanoalloyed ZnO-RGO nanocomposites exhibit higher photocatalytic activity for degrading dye than both Au and Pd hybridized ones, indicating the promising potential of bimetallic nanoalloys over elemental components. A non-monotonic dependence on the composite composition was found by analyzing photodegradation efficiency of a series of ZnO-RGO-AuPd hybrid nanostructures with different weight percentages of RGO. The hybrid nanostructure ZnO-RGO (5 wt%)-AuPd (1 wt%) exhibits highest photodegradation efficiency (similar to 100% degradation in 20 min) with an improvement in rate constant (k) by a factor of 10 compared to that of the ZnO-RGO nanocomposite. The enhancement of the photocatalytic activity is attributed to the better separation of photogenerated charge carriers in photocatalysts thereby suggesting possible usefulness in a broad range of applications, such as sensing, photocatalysis and solar energy conversion.
Resumo:
In this paper, the design of a new solar operated adsorption cooling system with two identical small and one large adsorber beds, which is capable of producing cold continuously, has been proposed. In this system, cold energy is stored in the form of refrigerant in a separate refrigerant storage tank at ambient temperature. Silica gel water is used as a working pair and system is driven by solar energy. The operating principle is described in details and its thermodynamic transient analysis is presented. Effect of COP and SCE for different adsorbent mass and adsorption/desorption time of smaller beds are discussed. Recommended mass and number of cycles of operation for smaller beds to attain continuous cooling with average COP and SCE of 0.63 and 337.5 kJ/kg, respectively are also discussed, at a generation, condenser and evaporator temperatures of 368 K, 303 K and 283 K, respectively. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
To harvest solar energy more efficiently, novel Ag2S/Bi2WO6 heterojunctions were synthesized by a hydrothermal route. This novel photocatalyst was synthesized by impregnating Ag2S into a Bi2WO6 semiconductor by a hydrothermal route without any surfactants or templates. The as prepared structures were characterized by multiple techniques such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmet-Teller (BET) analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectrometry (EDS), UV-vis diffuse reflection spectroscopy (DRS) and photoluminescence (PL). The characterization results suggest mesoporous hierarchical spherical structures with a high surface area and improved photo response in the visible spectrum. Compared to bare Bi2WO6, Ag2S/Bi2WO6 exhibited much higher photocatalytic activity towards the degradation of dye Rhodamine B (RhB). Although silver based catalysts are easily eroded by photogenerated holes, the Ag2S/Bi2WO6 photocatalyst was found to be highly stable in the cyclic experiments. Based on the results of BET, Pl and DRS analysis, two possible reasons have been proposed for the enhanced visible light activity and stability of this novel photocatalyst: (1) broadening of the photoabsorption range and (2) efficient separation of photoinduced charge carriers which does not allow the photoexcited electrons to accumulate on the conduction band of Ag2S and hence prevents the photocorrosion.
Resumo:
Photoluminescence and photocatalytic properties of Eu-doped ZnO nanoparticles (NPs) were synthesized by facile phyto route. XPS results demonstrated the existence of Eu3+ as dopant into ZnO. Morphologies of the NPs were mainly dependent on Eu3+ and Aloe vera gel. Red shift of energy band gap was due to the creation of intermediate energy states of Eu3+ and oxygen vacancies in the band gap. PL emission of ZnO:Eu3+ (1-11 mol%, 8 ml and 7 mol%, 2-12 ml) exhibit characteristic peaks of D-5(0) -> F-7(2) transitions. From the Judd-Ofelt analysis, intensities of transitions between different.' levels dependent on the symmetry of the local environment of Eu3+ ions. CIE chromaticity co-ordinates confirm reddish emission of the phosphor. Further, NPs exhibit excellent photocatalytic activity for the degradation of Rhodamine B (94%) under Sunlight was attributed to crystallite size, band gap, morphology and oxygen vacancies. In addition, photocatalyst reusability studies were conducted and found that Eu-doped catalyst could be reused several times with negligible decrease in catalytic activity. The present work directs new possibilities to provide some new insights into the design of new phyto synthesized nanophosphors for display devices, photocatalysts with high activity for environmental clean-up and solar energy conversion. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Cu2SnS3 thin films were deposited by a facile sot-gel technique followed by annealing. The annealed films were structurally characterized by grazing incidence X-ray diffraction (GIXRD) and transmission electron microscopy (TEM). The crystal structure was found to be tetragonal with crystallite sizes of 2.4-3 nm. Texture coefficient calculations from the GIXRD revealed the preferential orientation of the film along the (112) plane. The morphological investigations of the films were carried out using field emission scanning electron microscopy (FESEM) and the composition using electron dispersive spectroscopy (EDS). The temperature dependent current, voltage characteristics of the Cu2SnS3/AZnO heterostructure were studied. The log I-log V plot exhibited three regions of different slopes showing linear ohmic behavior and non-linear behavior following the power law. The temperature dependent current voltage characteristics revealed the variation in ideality factor and barrier height with temperature. The Richardson constant was calculated and its deviation from the theoretical value revealed the inhomogeneity of the barrier heights. Transport characteristics were modeled using the thermionic emission model. The Gaussian distribution of barrier heights was applied and from the modified Richardson plot the value of the Richardson constant was found to be 47.18 A cm(-2) K-2. (c) 2015 Elsevier B.V. All rights reserved.
Resumo:
Significant research has been pursued to develop solar selective metallic coatings using a variety of coating deposition techniques, with limited attempts to assess the properties of bulk metallic materials for solar energy applications. In developing bulk solar reflectors with good reflectance in the entire solar range, we report a new class of reflector materials based on Cu-Sn intermetallics with tailored substitution of aluminium or zinc. Our experimental results suggest that the arc melted-suction cast Cu (78.8 at%)-Al (21.2 at%) alloy with nanoscale surface roughness can exhibit a combination of 89% bulk specular reflectance and 83% bulk solar reflectance, together with a hardness of 2 GPa. We show that the present alloy design approach paves the way for further opportunities of tuning the spectral properties of this new class of solar reflector material. (C) 2016 Elsevier B.V. All rights reserved.
Resumo:
The dissertation presents a political and economic history of the federal government's program to commercialize photovoltaic energy for terrestrial use. Chapter 1 is a detailed history of the program. Chapter 2 is a brief review of the Congressional roll call voting literature. Chapter 3 develops PV benefit measures at the state and Congressional district level necessary for an econometric analysis of PV roll call voting. Chapter 4 presents the econometric analysis.
Because PV power was considerably more expensive than conventional power, the program was designed to make PV a significant power source in the long term, emphasizing research and development, although sizeable amounts have been spent for procurement (direct government purchases and indirectly through tax credits). The decentralized R and D program pursued alternative approaches in parallel, with subsequent funding dependent on earlier progress. Funding rose rapidly in the 1970s before shrinking in the 1980s. Tax credits were introduced in 1978, with the last of the credits due to expire this year.
Major issues in the program have been the appropriate magnitude of demonstrations and government procurement, whether decentralized, residential use or centralized utility generation would first be economic, the role of storage in PV, and the role of PV in a utility's generation mix.
Roll call voting on solar energy (all votes analyzed occurred from 1975-1980) was influenced in a cross-sectional sense by all the influences predicted: party and ideology, local economic benefits of the technology, local PV federal spending and manufacturing, and appropriations committee membership. The cross-sectional results for ideology are consistent with the strongly ideological character of solar energy politics and the timing of funding increases and decreases discussed in Chapter 1. Local PV spending and manufacturing was less significant than ideology or the economic benefits of the technology. Because time series analysis of the votes was not possible, it is not possible to test the role of economic benefits to the nation as a whole.
Resumo:
This thesis presents a concept for ultra-lightweight deformable mirrors based on a thin substrate of optical surface quality coated with continuous active piezopolymer layers that provide modes of actuation and shape correction. This concept eliminates any kind of stiff backing structure for the mirror surface and exploits micro-fabrication technologies to provide a tight integration of the active materials into the mirror structure, to avoid actuator print-through effects. Proof-of-concept, 10-cm-diameter mirrors with a low areal density of about 0.5 kg/m² have been designed, built and tested to measure their shape-correction performance and verify the models used for design. The low cost manufacturing scheme uses replication techniques, and strives for minimizing residual stresses that deviate the optical figure from the master mandrel. It does not require precision tolerancing, is lightweight, and is therefore potentially scalable to larger diameters for use in large, modular space telescopes. Other potential applications for such a laminate could include ground-based mirrors for solar energy collection, adaptive optics for atmospheric turbulence, laser communications, and other shape control applications.
The immediate application for these mirrors is for the Autonomous Assembly and Reconfiguration of a Space Telescope (AAReST) mission, which is a university mission under development by Caltech, the University of Surrey, and JPL. The design concept, fabrication methodology, material behaviors and measurements, mirror modeling, mounting and control electronics design, shape control experiments, predictive performance analysis, and remaining challenges are presented herein. The experiments have validated numerical models of the mirror, and the mirror models have been used within a model of the telescope in order to predict the optical performance. A demonstration of this mirror concept, along with other new telescope technologies, is planned to take place during the AAReST mission.
Resumo:
There are important problems to overcome if solar energy or other renewable energy sources are to be used effectively on a global scale. Solar photons must not only be harvested and converted into a usable form, but they must also be efficiently stored so that energy is available for use on cloudy days and at night. In this work, both the energy conversion and energy storage problems are addressed. Specifically, two cobalt complexes were designed and their reactivity probed for applications in energy conversion and storage. The first chapter describes a cobalt complex that is the first example of a dimeric cobalt compound with two singly proton-bridged cobaloxime units linked by a central BO4--bridge. Using electrochemical methods, the redox properties of the dimer were evaluated and it was found to be an electrocatalyst for proton reduction in acetonitrile.
Because hydrogen gas is difficult to handle and store, the hydrogenation of CO2 and later dehydrogenation of the liquid product, formic acid, has been proposed as a hydrogen storage system. Thus, a second complex, described in chapter two, supported by a triphosphine ligand framework was used as a catalyst precursor for this key dehydrogenation step. The studies here demonstrate the efficacy of the complex as a precatalyst for the desired reaction, with good conversion of starting formic acid to CO2 and H2. In order to better understand the properties of the triphosphine cobalt complex, a synthetic procedure for substituting electron donating groups (e.g., methoxy groups) onto the ligand was investigated, yielding a novel diphosphine cobalt(II) complex.
Resumo:
Accurate simulation of quantum dynamics in complex systems poses a fundamental theoretical challenge with immediate application to problems in biological catalysis, charge transfer, and solar energy conversion. The varied length- and timescales that characterize these kinds of processes necessitate development of novel simulation methodology that can both accurately evolve the coupled quantum and classical degrees of freedom and also be easily applicable to large, complex systems. In the following dissertation, the problems of quantum dynamics in complex systems are explored through direct simulation using path-integral methods as well as application of state-of-the-art analytical rate theories.
Resumo:
While concentrator photovoltaic cells have shown significant improvements in efficiency in the past ten years, once these cells are integrated into concentrating optics, connected to a power conditioning system and deployed in the field, the overall module efficiency drops to only 34 to 36%. This efficiency is impressive compared to conventional flat plate modules, but it is far short of the theoretical limits for solar energy conversion. Designing a system capable of achieving ultra high efficiency of 50% or greater cannot be achieved by refinement and iteration of current design approaches.
This thesis takes a systems approach to designing a photovoltaic system capable of 50% efficient performance using conventional diode-based solar cells. The effort began with an exploration of the limiting efficiency of spectrum splitting ensembles with 2 to 20 sub cells in different electrical configurations. Incorporating realistic non-ideal performance with the computationally simple detailed balance approach resulted in practical limits that are useful to identify specific cell performance requirements. This effort quantified the relative benefit of additional cells and concentration for system efficiency, which will help in designing practical optical systems.
Efforts to improve the quality of the solar cells themselves focused on the development of tunable lattice constant epitaxial templates. Initially intended to enable lattice matched multijunction solar cells, these templates would enable increased flexibility in band gap selection for spectrum splitting ensembles and enhanced radiative quality relative to metamorphic growth. The III-V material family is commonly used for multijunction solar cells both for its high radiative quality and for the ease of integrating multiple band gaps into one monolithic growth. The band gap flexibility is limited by the lattice constant of available growth templates. The virtual substrate consists of a thin III-V film with the desired lattice constant. The film is grown strained on an available wafer substrate, but the thickness is below the dislocation nucleation threshold. By removing the film from the growth substrate, allowing the strain to relax elastically, and bonding it to a supportive handle, a template with the desired lattice constant is formed. Experimental efforts towards this structure and initial proof of concept are presented.
Cells with high radiative quality present the opportunity to recover a large amount of their radiative losses if they are incorporated in an ensemble that couples emission from one cell to another. This effect is well known, but has been explored previously in the context of sub cells that independently operate at their maximum power point. This analysis explicitly accounts for the system interaction and identifies ways to enhance overall performance by operating some cells in an ensemble at voltages that reduce the power converted in the individual cell. Series connected multijunctions, which by their nature facilitate strong optical coupling between sub-cells, are reoptimized with substantial performance benefit.
Photovoltaic efficiency is usually measured relative to a standard incident spectrum to allow comparison between systems. Deployed in the field systems may differ in energy production due to sensitivity to changes in the spectrum. The series connection constraint in particular causes system efficiency to decrease as the incident spectrum deviates from the standard spectral composition. This thesis performs a case study comparing performance of systems over a year at a particular location to identify the energy production penalty caused by series connection relative to independent electrical connection.
Resumo:
A racionalização do uso da energia elétrica nas edificações é um assunto atual e de grande importância face ao grande impacto ambiental produzido. O consumo de energia elétrica no Brasil nas edificações residenciais, comerciais, de serviços e públicas é bastante significativo. Calcula-se que quase 50% da energia elétrica produzida no país seja consumida não só na operação e manutenção das edificações como também nos sistemas artificiais, que proporcionam conforto ambiental para seus usuários como iluminação, climatização e aquecimento de água. O Regulamento Técnico de Qualidade do Nível de Eficiência Energética de Edifícios Comerciais e Serviços e Públicos, RQT-C do INMETRO surge como uma contribuição à etiquetagem do nível de eficiência energética das edificações de uso coletivo. Para a determinação da eficiência são considerados três requisitos: envoltória da edificação, sistema de iluminação e sistema de condicionamento de ar. Todos os requisitos têm cinco níveis de eficiência que variam de A (mais eficiente) até E (menos eficiente), que associados com algumas bonificações (uso da energia solar, ventilação natural, etc.) tornam possível a atribuição de uma classificação geral para o edifício em seu todo. Neste trabalho objetivou-se avaliar esse desempenho energético para o prédio do Instituto Brasileiro de Adminstração Municipal -IBAM, situado na cidade do Rio de Janeiro, de concepção modernista. Foi mostrado como as decisões arquitetônicas tomadas e o uso da ventilação natural podem influenciar na avaliação de sua eficiência energética.
Resumo:
150 p.