984 resultados para HOLOCENE MANGROVE
Resumo:
In order to infer reactions of treeline and alpine vegetation to climatic change, past vegetation changes are reconstructed on the basis of pollen, macrofossil and charcoal analysis. The sampled sediment cores originate from the small pond Emines, located at the Sanetsch Pass (connecting the Valais and Bern, Switzerland) at an altitude of 2288 m a.s.l. Today's treeline is at ca. 2200 m a.s.l. in the area, though due to special pass (saddle) conditions it is locally depressed to ca. 2060 m a.s.l. Our results reveal that the area around Emines was covered by treeless alpine vegetation during most of the past 12,000 years. Single individuals of Betula, Larix decidua and possibly Pinus cembra occurred during the Holocene. Major centennial to millennial-scale responses of treeline vegetation to climatic changes are evident. However, alpine vegetation composition remained rather stable between 11,500 and 6000 cal. BP, showing that Holocene climatic changes of +/− 1 °C hardly influenced the local vegetation at Emines. The rapid warming of 3–4 °C at the Late Glacial/Holocene transition (11,600 cal. BP) caused significant altitudinal displacements of alpine species that were additionally affected by the rapid upward movement of trees and shrubs. Since the beginning of the Neolithic, vegetation changes at Sanetsch Pass resulted from a combination of climate change and human impact. Anthropogenic fire increase and land-use change combined with a natural change from subcontinental to more oceanic climate during the second half of the Holocene led to the disappearance of P. cembra in the study area, but favoured the occurrence of Picea abies and Alnus viridis. The mid- to late-Holocene decline of Abies alba was primarily a consequence of human impact, since this mesic species should have benefitted from a shift to more oceanic conditions. Future alpine vegetation changes will be a function of the amplitude and rapidity of global warming as well as human land use. Our results imply that alpine vegetation at our treeline pass site was never replaced by forests since the last ice-age. This may change in the future if anticipated climate change will induce upslope migration of trees. The results of this study emphasise the necessity of climate change mitigation in order to prevent biodiversity losses as a consequence of unprecedented community and species displacement in response to climatic change.
Resumo:
A novel proxy for continental mean annual air temperature (MAAT) and soil pH, the MBT/CBT-paleothermometer, is based on the temperature (T) and pH-dependent distribution of specific bacterial membrane lipids (branched glycerol dialkyl glycerol tetraethers – GDGTs) in soil organic matter. Here, we tested the applicability of the MBT/CBT-paleothermometer to sediments from Lake Cadagno, a high Alpine lake in southern Switzerland with a small catchment of 2.4 km2. We analysed the distribution of bacterial GDGTs in catchment soils and in a radiocarbon-dated sediment core from the centre of the lake, covering the past 11 000 yr. The distribution of bacterial GDGTs in the catchment soils is very similar to that in the lake's surface sediments, indicating a common origin of the lipids. Consequently, their transfer from the soils into the sediment record seems undisturbed, probably without any significant alteration of their distribution through in situ production in the lake itself or early diagenesis of branched GDGTs. The MBT/CBT-inferred MAAT estimates from soils and surface sediments are in good agreement with instrumental values for the Lake Cadagno region (~0.5 °C). Moreover, downcore MBT/CBT-derived MAAT estimates match in timing and magnitude other proxy-based T reconstructions from nearby locations for the last two millennia. Major climate anomalies recorded by the MBT/CBT-paleothermometer are, for instance, the Little Ice Age (~14th to 19th century) and the Medieval Warm Period (MWP, ~9th to 14th century). Together, our observations indicate the quantitative applicability of the MBT/CBT-paleothermometer to Lake Cadagno sediments. In addition to the MWP, our lacustrine paleo T record indicates Holocene warm phases at about 3, 5, 7 and 11 kyr before present, which agrees in timing with other records from both the Alps and the sub-polar North-East Atlantic Ocean. The good temporal match of the warm periods determined for the central Alpine region with north-west European winter precipitation strength implies a strong and far-reaching influence of the North Atlantic Oscillation on continental European T variations during the Holocene.
Resumo:
Climate and environmental reconstructions from natural archives are important for the interpretation of current climatic change. Few quantitative high-resolution reconstructions exist for South America which is the only land mass extending from the tropics to the southern high latitudes at 56°S. We analyzed sediment cores from two adjacent lakes in Northern Chilean Patagonia, Lago Castor (45°36′S, 71°47′W) and Laguna Escondida (45°31′S, 71°49′W). Radiometric dating (210Pb, 137Cs, 14C-AMS) suggests that the cores reach back to c. 900 BC (Laguna Escondida) and c. 1900 BC (Lago Castor). Both lakes show similarities and reproducibility in sedimentation rate changes and tephra layer deposition. We found eight macroscopic tephras (0.2–5.5 cm thick) dated at 1950 BC, 1700 BC, at 300 BC, 50 BC, 90 AD, 160 AD, 400 AD and at 900 AD. These can be used as regional time-synchronous stratigraphic markers. The two thickest tephras represent known well-dated explosive eruptions of Hudson volcano around 1950 and 300 BC. Biogenic silica flux revealed in both lakes a climate signal and correlation with annual temperature reanalysis data (calibration 1900–2006 AD; Lago Castor r = 0.37; Laguna Escondida r = 0.42, seven years filtered data). We used a linear inverse regression plus scaling model for calibration and leave-one-out cross-validation (RMSEv = 0.56 °C) to reconstruct sub decadal-scale temperature variability for Laguna Escondida back to AD 400. The lower part of the core from Laguna Escondida prior to AD 400 and the core of Lago Castor are strongly influenced by primary and secondary tephras and, therefore, not used for the temperature reconstruction. The temperature reconstruction from Laguna Escondida shows cold conditions in the 5th century (relative to the 20th century mean), warmer temperatures from AD 600 to AD 1150 and colder temperatures from AD 1200 to AD 1450. From AD 1450 to AD 1700 our reconstruction shows a period with stronger variability and on average higher values than the 20th century mean. Until AD 1900 the temperature values decrease but stay slightly above the 20th century mean. Most of the centennial-scale features are reproduced in the few other natural climate archives in the region. The early onset of cool conditions from c. AD 1200 onward seems to be confirmed for this region.