713 resultados para Griffin, S. A.
Resumo:
AIMS To demonstrate the potential use of in vitro poly(lactic-co-glycolic acid) (PLGA) microparticles in comparison with triamcinolone suspension to aid visualisation of vitreous during anterior and posterior vitrectomy. METHODS PLGA microparticles (diameter 10-60 microm) were fabricated using single and/or double emulsion technique(s) and used untreated or following the surface adsorption of a protein (transglutaminase). Particle size, shape, morphology and surface topography were assessed using scanning electron microscopy (SEM) and compared with a standard triamcinolone suspension. The efficacy of these microparticles to enhance visualisation of vitreous against the triamcinolone suspension was assessed using an in vitro set-up exploiting porcine vitreous. RESULTS Unmodified PLGA microparticles failed to adequately adhere to porcine vitreous and were readily washed out by irrigation. In contrast, modified transglutaminase-coated PLGA microparticles demonstrated a significant improvement in adhesiveness and were comparable to a triamcinolone suspension in their ability to enhance the visualisation of vitreous. This adhesive behaviour also demonstrated selectivity by not binding to the corneal endothelium. CONCLUSION The use of transglutaminase-modified biodegradable PLGA microparticles represents a novel method of visualising vitreous and aiding vitrectomy. This method may provide a distinct alternative for the visualisation of vitreous whilst eliminating the pharmacological effects of triamcinolone acetonide suspension.
Resumo:
The link between teamwork and job satisfaction was investigated in a sample of 48 manufacturing companies comprising 4708 employees. Two separate research questions were addressed. First, it was proposed that supervisor support would be a weaker source of job satisfaction in companies with higher levels of teamworking. Multilevel analysis indicated that the extent of teamwork at the company level of analysis moderated the relationship between individual perceptions of supervisor support and job satisfaction. Second, it was proposed that the extent of teamwork would be positively related to perceptions of job autonomy but negatively related to perceptions of supervisor support. Further, it was proposed that the link between teamwork and job autonomy would be explained by job enrichment practices associated with teamwork. Analyses of aggregated company data supported these propositions and provided evidence for a complex mediational path between teamwork and job satisfaction. Implications for implementing teamwork in organizations are discussed. Copyright © 2001 John Wiley & Sons, Ltd.
Resumo:
Heterotropic association of tissue transglutaminase (TG2) with extracellular matrix-associated fibronectin (FN) can restore the adhesion of fibroblasts when the integrin-mediated direct binding to FN is impaired using RGD-containing peptide. We demonstrate that the compensatory effect of the TG-FN complex in the presence of RGD-containing peptides is mediated by TG2 binding to the heparan sulfate chains of the syndecan-4 cell surface receptor. This binding mediates activation of protein kinase Ca (PKCa) and its subsequent interaction with ß1 integrin since disruption of PKCa binding to ß1 integrins with a cell-permeant competitive peptide inhibits cell adhesion and the associated actin stress fiber formation. Cell signaling by this process leads to the activation of focal adhesion kinase and ERK1/2 mitogen-activated protein kinases. Fibroblasts deficient in Raf-1 do not respond fully to the TG-FN complex unless either the full-length kinase competent Raf-1 or the kinase-inactive domain of Raf-1 is reintroduced, indicating the involvement of the Raf-1 protein in the signaling mechanism. We propose a model for a novel RGD-independent cell adhesion process that could be important during tissue injury and/or remodeling whereby TG-FN binding to syndecan-4 activates PKCa leading to its association with ß1 integrin, reinforcement of actin-stress fiber organization, and MAPK pathway activation.
Resumo:
Consistent clinical and experimental evidence points to the involvement of two enzymatic systems (the matrix metalloproteinases-MMPs and the protein crosslinking enzymes transglutaminases) in prominent physiologic roles of endothelium in the maintenance of vascular wall integrity, regulation of blood flow and clotting, and exchange of molecules and cells between the extra- and the intravascular space. These issues are briefly discussed in relation to differentiation of the endothelium within the vascular system, mechanisms of molecular regulation and the effects of their disruption in pathology. While the roles of MMPs are now understood in detail and represent a promising target for pharmacological interventions, much less is known on the roles of transglutaminases in vascular biology. These last enzymes are expressed at extremely high levels in endothelial cells and are involved in cell matrix interactions important to angiogenesis and apoptosis/cell death of endothelial cells, in the control of blood clotting and and in the transfer of molecules and cells across the vascular walls. On the clinical side, these properties are relevant in vascular inflammatory processes, atherosclerosis and tumor metastasis. We summarise the large body of evidence available in this perspective and discuss its implications for the development of new therapeutic strategies.
Resumo:
Biocomposite films comprising a non-crosslinked, natural polymer (collagen) and a synthetic polymer, poly(var epsilon-caprolactone) (PCL), have been produced by impregnation of lyophilised collagen mats with a solution of PCL in dichloromethane followed by solvent evaporation. This approach avoids the toxicity problems associated with chemical crosslinking. Distinct changes in film morphology, from continuous surface coating to open porous format, were achieved by variation of processing parameters such as collagen:PCL ratio and the weight of the starting lyophilised collagen mat. Collagenase digestion indicated that the collagen content of 1:4 and 1:8 collagen:PCL biocomposites was almost totally accessible for enzymatic digestion indicating a high degree of collagen exposure for interaction with other ECM proteins or cells contacting the biomaterial surface. Much reduced collagen exposure (around 50%) was measured for the 1:20 collagen:PCL materials. These findings were consistent with the SEM examination of collagen:PCL biocomposites which revealed a highly porous morphology for the 1:4 and 1:8 blends but virtually complete coverage of the collagen component by PCL in the1:20 samples. Investigations of the attachment and spreading characteristics of human osteoblast (HOB) cells on PCL films and collagen:PCL materials respectively, indicated that HOB cells poorly recognised PCL but attachment and spreading were much improved on the biocomposites. The non-chemically crosslinked, collagen:PCL biocomposites described are expected to provide a useful addition to the range of biomaterials and matrix systems for tissue engineering.
Resumo:
Dipeptide-based sulfonium peptidylmethylketones derived from 6-diazo-5-oxo-L-norleucine (DON) have been investigated as potential water-soluble inhibitors of extracellular transglutaminase. The lead compounds were prepared in four steps and exhibited potent activity against tissue transglutaminase.
Resumo:
Tissue transglutaminase (TG2) is a multifunctional Ca2+ activated protein crosslinking enzyme secreted into the extracellular matrix (ECM), where it is involved in wound healing and scarring, tissue fibrosis, celiac disease and metastatic cancer. Extracellular TG2 can also facilitate cell adhesion important in wound healing through a non-transamidating mechanism via its association with fibronectin (FN), heparan sulphates (HS) and integrins. Regulating the mechanism how TG2 is translocated into the ECM therefore provides a strategy for modulating these physiological and pathological functions of the enzyme. Here, through molecular modelling and mutagenesis we have identified the HS binding site of TG2 202KFLKNAGRDCSRRSSPVYVGR222. We demonstrate the requirement of this binding site for translocation of TG2 into the ECM through a mechanism involving cell surface shedding of HS. By synthesizing a peptide NPKFLKNAGRDCSRRSS corresponding to the HS binding site within TG2, we also demonstrate how this mimicking peptide can in isolation compensate the RGD-induced loss of cell adhesion on FN via binding to syndecan-4, leading to activation of PKCa, pFAK-397 and ERK1/2 and the subsequent formation of focal adhesions and actin cytoskeleton organization. A novel regulatory mechanism for TG2 translocation into the extracellular compartment that depends upon TG2 conformation and the binding of HS is proposed.
Resumo:
TG2 is multifunctional enzyme which can be secreted to the cell surface by an unknown mechanism where its Ca(2+)-dependent transamidase activity is implicated in a number of events important to cell behaviour. However, this activity may only be transient due to the oxidation of the enzyme in the extracellular environment including its reaction with NO probably accounting for its many other roles, which are transamidation independent. In this review, we discuss the novel roles of TG2 at the cell surface and in the ECM acting either as a transamidating enzyme or as an extracellular scaffold protein involved in cell adhesion. Such roles include its ability to act as an FN co-receptor for ß integrins or in a heterocomplex with FN interacting with the cell surface heparan sulphate proteoglycan syndecan-4 leading to activation of PKCa. These different properties of TG2 involve this protein in various physiological processes, which if not regulated appropriately can also lead to its involvement in a number of diseases. These include metastatic cancer, tissue fibrosis and coeliac disease, thus increasing its attractiveness as both a therapeutic target and diagnostic marker.
Resumo:
For the last several years, mobile devices and platform security threats, including wireless networking technology, have been top security issues. A departure has occurred from automatic anti-virus software based on traditional PC defense: risk management (authentication and encryption), compliance, and disaster recovery following polymorphic viruses and malware as the primary activities within many organizations and government services alike. This chapter covers research in Turkey as a reflection of the current market – e-government started officially in 2008. This situation in an emerging country presents the current situation and resistances encountered while engaging with mobile and e-government interfaces. The authors contend that research is needed to understand more precisely security threats and most of all potential solutions for sustainable future intention to use m-government services. Finally, beyond m-government initiatives' success or failure, the mechanisms related to public administration mobile technical capacity building and security issues are discussed.
Resumo:
The up-regulation and trafficking of tissue transglutaminase (TG2) by tubular epithelial cells (TEC) has been implicated in the development of kidney scarring. TG2 catalyses the crosslinking of proteins via the formation of highly stable e(?-glutamyl) lysine bonds. We have proposed that TG2 may contribute to kidney scarring by accelerating extracellular matrix (ECM) deposition and by stabilising the ECM against proteolytic decay. To investigate this, we have studied ECM metabolism in Opossum kidney (OK) TEC induced to over-express TG2 by stable transfection and in tubular cells isolated from TG2 knockout mice. Increasing the expression of TG2 led to increased extracellular TG2 activity (p < 0.05), elevated e(?-glutamyl) lysine crosslinking in the ECM and higher levels of ECM collagen per cell by 3H-proline labelling. Immunofluorescence demonstrated that this was attributable to increased collagen III and IV levels. Higher TG2 levels were associated with an accelerated collagen deposition rate and a reduced ECM breakdown by matrix metalloproteinases (MMPs). In contrast, a lack of TG2 was associated with reduced e(?-glutamyl) lysine crosslinking in the ECM, causing reduced ECM collagen levels and lower ECM per cell. We report that TG2 contributes to ECM accumulation primarily by accelerating collagen deposition, but also by altering the susceptibility of the tubular ECM to decay. These findings support a role for TG2 in the expansion of the ECM associated with kidney scarring.
Resumo:
Transglutaminases have the ability to incorporate primary amines and to graft peptides (containing glutamine or lysine residues) into proteins. These properties enable transglutaminases to be used in the grafting of a range of compounds including peptides and/or proteins onto wool fibres, altering their functionality. In this paper we investigated the transglutaminase mediated grafting of silk proteins into wool and its effect on wool properties. A commercial hydrolysed silk preparation was compared with silk sericin. The silk sericin protein was labelled with a fluorescent probe which was used to demonstrate the efficiency of the TGase grafting of such proteins into wool fibres. The TGase mediated grafting of these proteins led to a significant effect on the properties of wool yarn and fabric, resulting in increased bursting strength, as well as reduced levels of felting shrinkage and improved fabric softness. Also observed was an accumulation of deposits on the surface of the treated wool fibres when monitored by SEM and alterations in the thermal behaviour of the modified fibres, in particular for mTGase/sericin treated fibres which, with the confocal studies, corroborate the physical changes observed on the treated wool fabric. © 2006 Elsevier Inc. All rights reserved.
Resumo:
Tissue transglutaminase (TG2) can induce post-translational modification of proteins, resulting in protein cross-linking or incorporation of polyamines into substrates, and can also function as a signal transducing G protein. The role of TG2 in the formation of insoluble cross-links has led to its implication in some neurodegenerative conditions. Exposure of pre-differentiated SH-SY5Y cells to the Parkinsonian neurotoxin 1-methyl-4-phenylpyridinium ion (MPP+) resulted in significant dose-dependent reductions in TG2 protein levels, measured by probing Western blots with a TG2-specific antibody. Transglutaminase (TG) transamidating activity, on the other hand, monitored by incorporation of a polyamine pseudo-substrate into cellular proteins, was increased. Inhibitors of TG (putrescine) and TG2 (R283) exacerbated MPP+ toxicity, suggesting that activation of TG2 may promote a survival response in this toxicity paradigm.
Resumo:
Administration of active TG2 to two different in vitro angiogenesis assays resulted in the accumulation of a complex extracellular matrix (ECM) leading to the suppression of endothelial tube formation without causing cell death. Matrix accumulation was accompanied by a decreased rate of ECM turnover, with increased resistance to matrix metalloproteinase-1. Intratumor injection of TG2 into mice bearing CT26 colon carcinoma tumors demonstrated a reduction in tumor growth, and in some cases tumor regression. In TG2 knockout mice, tumor progression was increased and survival rate reduced compared to wild-type mice. In wild-type mice, an increased presence of TG2 was detectable in the host tissue around the tumor. Analysis of CT26 tumors injected with TG2 revealed fibrotic-like tissue containing increased collagen, TG2-mediated crosslink and reduced organized vasculature. TG2-mediated modulation of cell behavior via changes in the ECM may provide a new approach to solid tumor therapy.
Resumo:
Background & Aims: In celiac disease (CD), transglutaminase type II (TG2) has 2 fundamental roles: (1) as the autoantigen recognized by highly specific autoantibodies and (2) the modifier of pathogenic gliadin T-cell epitopes. It follows that inhibition of TG2 might represent an attractive strategy to curb the toxic action of gliadin. Here we studied the validity of this strategy using the organ culture approach. Methods: Duodenal biopsy specimens from 30 treated patients with CD, 33 untreated patients with CD, and 24 controls were cultured with or without gliadin peptides p31-43, pα-9, and deamidated pα-9 for 20 minutes, 3 hours, and 24 hours. In 31 patients with CD and 16 controls, TG2 inhibitor R283 or anti-TG CUB 7402 or anti-surface TG2 (6B9) mAbs were used in cultures. T84 cells were also cultured with or without peptides with or without TG inhibitors. Mucosal modifications after culture were assessed by immunofluorescence, in situ detection of TG activity, confocal microscopy, and fluorescence-activated cell sorter analysis. Results: The enzymatic inhibition of TG2 only controlled gliadin-specific T-cell activation. The binding of surface TG2 contained gliadin-specific T-cell activation and p31-43-induced actin rearrangement, epithelial phosphorylation, and apoptosis, both in organ cultures and T84 cells. Conclusions: These data indicate a novel and unexpected biological role for surface TG2 in the pathogenesis of CD suggesting a third role for TG2 in CD. These results have a specific impact for celiac disease, with wider implications indicating a novel biologic function of TG2 with possible repercussions in other diseases. © 2005 by the American Gastroenterological Association.