999 resultados para Glass-workers


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the fabrication of two kinds of large core area Nd3+ doped silicate glass photonic crystal fibres, and demonstration of the fibre waveguiding properties. The measured minimum loss of one kind of fibres is 2.5 db/m at 660nm. The fibres sustain only a single mode at least over the wavelength range from 660nm to 980nm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report refractive index change in a femtosecond laser irradiated Nd3+-doped phosphate glass. The effects of annealing temperature on the refractive index change of the glass have been investigated. Absorption spectra of the glass sample before and after femtosecond laser irradiation and subsequent annealing were measured. The results indicate that multiphoton absorption can undertake although there are intrinsic absorption for the glass in irradiation wavelength. The results may be useful for fabrication of three-dimensional integrated optics devices and waveguide laser devices in this glass. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Near infrared broadband emission characteristics of bismuth-doped aluminophosphate glass have been investigated. Broad infrared emissions peaking at 1210nm, 1173nm and 1300nm were observed when the glass was pumped by 405nm laser diode (LD), 514nm Ar+ laser and 808nm LD, respectively. The full widths at half maximum (FWHMs) are 235nm, 207nm and 300nm for the emissions at 1210nm, 1173nm and 1300nm, respectively. Based on the energy matching conditions, it is suggested that the infrared emission may be ascribed to P-3(1) --> P-3(0) transition of Bi+. The broadband infrared luminescent characteristics of the glasses indicate that they are promising for broadband optical fiber amplifiers and tunable lasers. (C) 2005 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A compact nonporous high silica (SiO2 % > 96%) glass containing 3400 ppm Er3+ ions, which was about ten times higher than that in Er-doped silica fiber amplifier (EDSFA), was synthesized by sintering porous glass immersed into erbium nitrate solution. The 1532 nm fluorescence has a FWHM (Full Width at Half Maximum) of 45 nm wider than that of EDSFA and possesses the glass with potential application in broadband fiber amplifiers. The Judd-Ofelt theoretical analysis reflects that Er3+ ions are located in a higher covalent environment which are comparable to those of aluminosilicate glass. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Qens/wins 2014 - 11th International Conference on Quasielastic Neutron Scattering and 6th International Workshop on Inelastic Neutron Spectrometers / editado por:Frick, B; Koza, MM; Boehm, M; Mutka, H

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Broadband neat-infrared emission from transparent Ni2+-doped sodium aluminosilicate glass-cermaics is observed. The broad emission is centered at 1290 nm and covers the whole telecommunication wavelength region (1100-1700 nm) with full width at half maximum of about 340 nm. The observed infrared emission could be attributed to the T-3(2)(F) -> (3)A(2)(F) transition of octahedral Ni2+ ions that occupy high-field sites in nanocrystals. The product of the lifetime and the stimulated emission cross section is 2.15 x 10(-24) cm(2)s. It is suggested that Ni2+-doped sodium aluminosilicate glass ceramics have potential applications in tunable broadband light sources and broadband amplifiers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new kind of Nd3+, -doped high silica glass (SiO2 > 96% (mass fraction)) was obtained by sintering porous glass impregnated with Nd3+, ions. The absorption and luminescence properties of high silica glass doped with different Nd3+, concentrations were studied. The intensity parameters Omega(t) (t = 2, 4, 6), spontaneous emission probability, fluorescence lifetime, radiative quantum efficiency, fluorescence branching ratio, and stimulated emission cross section were calculated using the Judd-Ofelt theory. The optimal Nd3+ concentration in high silica glass was 0.27% (mole fraction) because of its high quantum efficiency and emission intensity. By comparing the spectroscopic parameters with other Nd3+ doped oxide glasses and commercial silicate glasses, the Nd3+-doped high silica glasses are likely to be a promising material used for high power and high repetition rate lasers.