1000 resultados para Geophysical data
Resumo:
Manganese nodules and manganese carbonate concretions occur in the upper 10-15 cm of the Recent sediments of Loch Fyne, Argyllshire in water depths of 180-200 m. The nodules are spherical, a few mm to 3 cm in diameter, and consist of a black, Mn-rich core and a thin, red, Fe-rich rim. The carbonate occurs as irregular concretions, 0.5-8 cm in size, and as a cement in irregular nodule and shell fragment aggregates. It partially replaces some nodule material and clastic silicate inclusions, but does not affect aragonitic and calcitic shell fragments. The nodules are approximately 75% pure oxides and contain 30% Mn and 4% Fe. In the cores, the principal mineral phase is todorokite, with a Mn/Fe ratio of 17. The rim consists of X-ray amorphous Fe and Mn oxides with a Mn/Fe ratio of 0.66. The cores are enriched, relative to Al, in K, Ba, Co, Mo, Ni and Sr while the rims contain more P, Ti, As, Pb, Y and Zn. The manganese carbonate has the composition (Mn47.7 Ca45.1 Mg7.2) CO3. Apart from Cu, all minor elements are excluded from significant substitution in the carbonate lattice. Manganese nodules and carbonates form diagenetically within the Recent sediments of Loch Fyne. This accounts for the high Mn/Fe ratios in the oxide phases and the abundance of manganese carbonate concretions. Mn concentrations in the interstitial waters of sediment cores are high (ca. 10 ppm) as also, by inference, are the dissolved carbonate concentrations.
Resumo:
Information on possible resource value of sea floor manganese nodule deposits in the eastern north Pacific has been obtained by a study of records and collections of the 1972 Sea Scope Expedition.
Resumo:
Manganese nodules containing up to 22 percent manganese oxide were found in Green Bay and the western and northern parts of Lake Michigan. The chemical composition of these nodules resembles that of shallow-water lacustrine and marine nodules. The manganese content of interstitial water is in some places enriched as much as 4000 times over that of lake water.
Resumo:
The Greenland Ice Sheet Project 2 (GISP2) core can enhance our understanding of the relationship between parameters measured in the ice in central Greenland and variability in the ocean, atmosphere, and cryosphere of the North Atlantic Ocean and adjacent land masses. Seasonal (summer, winter) to annual responses of dD and deuterium excess isotopic signals in the GISP2 core to the seesaw in winter temperatures between West Greenland and northern Europe from A.D. 1840 to 1970 are investigated. This seesaw represents extreme modes of the North Atlantic Oscillation, which also influences sea surface temperatures (SSTs), atmospheric pressures, geostrophic wind strength, and sea ice extents beyond the winter season. Temperature excursions inferred from the dD record during seesaw/extreme NAO mode years move in the same direction as the West Greenland side of the seesaw. Symmetry with the West Greenland side of the seesaw suggests a possible mechanism for damping in the ice core record of the lowest decadal temperatures experienced in Europe from A.D. 1500 to 1700. Seasonal and annual deuterium excess excursions during seesaw years show negative correlation with dD. This suggests an isotopic response to a SST/ land temperature seesaw. The isotopic record from GISP2 may therefore give information on both ice sheet and sea surface temperature variability. Cross-plots of dD and d show a tendency for data to be grouped according to the prevailing mode of the seesaw, but do not provide unambiguous identification of individual seesaw years. A combination of ice core and tree ring data sets may allow more confident identification of GA and GB (extreme NAO mode) years prior to 1840.