969 resultados para Geology--East (U.S.)--Maps
Resumo:
The increasing pCO2 in seawater is a serious threat for marine calcifiers and alters the biogeochemistry of the ocean. Therefore, the reconstruction of past-seawater properties and their impact on marine ecosystems is an important way to investigate the underlying mechanisms and to better constrain the effects of possible changes in the future ocean. Cold-water coral (CWC) ecosystems are biodiversity hotspots. Living close to aragonite undersaturation, these corals serve as living laboratories as well as archives to reconstruct the boundary conditions of their calcification under the carbonate system of the ocean. We investigated the reef-building CWC Lophelia pertusa as a recorder of intermediate ocean seawater pH. This species-specific field calibration is based on a unique sample set of live in situ collected L. pertusa and corresponding seawater samples. These data demonstrate that uranium speciation and skeletal incorporation for azooxanthellate scleractinian CWCs is pH dependent and can be reconstructed with an uncertainty of ±0.15. Our Lophelia U / Ca-pH calibration appears to be controlled by the high pH values and thus highlighting the need for future coral and seawater sampling to refine this relationship. However, this study recommends L. pertusa as a new archive for the reconstruction of intermediate water mass pH and hence may help to constrain tipping points for ecosystem dynamics and evolutionary characteristics in a changing ocean.
Resumo:
The Labrador Sea is a particularly suitable high-latitude basin for investigating U and Th behavior in deep-sea sediments. During the late Quaternary, the cyclic development and decay of huge ice sheets on adjacent land masses resulted in large-amplitude changes in sedimentation rates and organic paleoproductivities. The resulting magnification of U and Th response is well illustrated by high-resolution studies on piston-cored sediments from the Greenland continental rise at Ocean Drilling Program Leg 105 Site 646 spanning isotopic stages 8 to 1. Our results show a clear positive correlation of 238U/232Th ratios with organic paleoproductivity indicators (e.g., dinocyst) due to U uptake in the water column and/or during the early early diagenesis of organic matter responding to carbon fluxes and to their climate forcing. 230Th excesses over 234U exceed the theoretical value of the 230Th rain from the overlying water column, indicating lateral input possibly from the Greenland slope and shelf. Because these horizontal fluxes of 230Th may be partly controlled by physical parameters, 230Th excesses cannot be unequivocally correlated with sedimentation rates and/or productivity as reported elsewhere. In this subarctic basin characterized by low overall organic carbon burial, the 238U/232Th ratio appears to be a sensible geochemical indicator of organic activity and paleoproductivity.