996 resultados para Geology, Geochemistry and Mineralogy.
Resumo:
Acknowledgements. This work is dedicated to the memory of Andrés Pérez-Estaún, brilliant scientist, colleague, and friend. The authors sincerely thank Ian Ferguson and an anonymous reviewer for their useful comments on the manuscript. Xènia Ogaya is currently supported in the Dublin Institute for Advanced Studies by a Science Foundation Ireland grant IRECCSEM (SFI grant 12/IP/1313). Juan Alcalde is funded by NERC grant NE/M007251/1, on interpretational uncertainty. Juanjo Ledo, Pilar Queralt and Alex Marcuello thank Ministerio de Economía y Competitividad and EU Feder Funds through grant CGL2014- 54118-C2-1-R. Funding for this Project has been partially provided by the Spanish Ministry of Industry, Tourism and Trade, through the CIUDEN-CSIC-Inst. Jaume Almera agreement (ALM-09-027: Characterization, Development and Validation of Seismic Techniques applied to CO2 Geological Storage Sites), the CIUDEN-Fundació Bosch i Gimpera agreement (ALM-09-009 Development and Adaptation of Electromagnetic techniques: Characterisation of Storage Sites) and the project PIERCO2 (Progress In Electromagnetic Research for CO2 geological reservoirs CGL2009-07604). The CIUDEN project is co-financed by the European Union through the Technological Development Plant of Compostilla OXYCFB300 Project (European Energy Programme for Recovery).
Resumo:
Igneous rocks were recovered from three sites on Hess Rise during Deep Sea Drilling Project Leg 62: altered basalt at Site 464, at the northern end of Hess Rise; and altered trachyte from Site 465, and rounded basalt pebbles in upper Albian to middle Miocene sediments from Site 466, both at the southern end of Hess Rise. Major-, minor-, and trace-element data for basalt from Hole 464 are consistent with these rocks being transitional tholeiites that have undergone low-temperature alteration by reaction with sea water. Trachyte from Hole 465A exhibits as many as three generations of plagioclase along with potash feldspar that are flow aligned in groundmasses alterted to smectites and random mixed-layer clays. Textural evidence indicates that these rocks were eruped subaerially. Chemical data show a range of values when plotted on two- and three-component variation diagrams. The observed variations may result in part from differentiation, but they also reflect the high degree of alteration. Several oxides and elements show strong correlation with H2O+: K2O, SiO2, Rb and Lu decrease and MgO increases with increasing H2O+. These trends, except for that of Lu, are consistent with experimentally determined changes in chemistry that accompany alteration. The trend for Lu has not been previously reported; it may result from a more-intense alteration of the HREE-rich mafic minerals than of the LREE-rich feldspars. Despite their alteration, the trachytes compare favorably with alkalic differentiates from oceanic islands. We interpret Hess Rise as a volcanic platform formed by eruption of off-ridge volcanic rocks onto MORB oceanic crust during the Aptian and Albian stages, after the basement had migrated away from the spreading center. By analogy with present oceanic islands, we propose that early tholeiitic basalts were followed by alkalic basalts and their differentiation products (trachytes), producing a volcanic archipelago of islands and seamounts. Subsequent tectonism and subsidence led to the present state of Hess Rise.
Resumo:
Maps folded in pocket.
Resumo:
Under contract between the University of Utah and the U.S. Atomic Energy Commission, the writer has carried on a field and laboratory investigation of the uranium deposits in the Salt Wash sandstone of the Colorado Plateau.