620 resultados para Gasoline.
Resumo:
Hydrogen can be an unlimited source of clean energy for future because of its very high energy density compared to the conventional fuels like gasoline. An efficient and safer way of storing hydrogen is in metals and alloys as hydrides. Light metal hydrides, alanates and borohydrides have very good hydrogen storage capacity, but high operation temperatures hinder their application. Improvement of thermodynamic properties of these hydrides is important for their commercial use as a source of energy. Application of pressure on materials can have influence on their properties favoring hydrogen storage. Hydrogen desorption in many complex hydrides occurs above the transition temperature. Therefore, it is important to study the physical properties of the hydride compounds at ambient and high pressure and/or high temperature conditions, which can assist in the design of suitable storage materials with desired thermodynamic properties. ^ The high pressure-temperature phase diagram, thermal expansion and compressibility have only been evaluated for a limited number of hydrides so far. This situation serves as a main motivation for studying such properties of a number of technologically important hydrides. Focus of this dissertation was on X-ray diffraction and Raman spectroscopy studies of Mg2FeH6, Ca(BH4) 2, Mg(BH4)2, NaBH4, NaAlH4, LiAlH4, LiNH2BH3 and mixture of MgH 2 with AlH3 or Si, at different conditions of pressure and temperature, to obtain their bulk modulus and thermal expansion coefficient. These data are potential source of information regarding inter-atomic forces and also serve as a basis for developing theoretical models. Some high pressure phases were identified for the complex hydrides in this study which may have better hydrogen storage properties than the ambient phase. The results showed that the highly compressible B-H or Al-H bonds and the associated bond disordering under pressure is responsible for phase transitions observed in brorohydrides or alanates. Complex hydrides exhibited very high compressibility suggesting possibility to destabilize them with pressure. With high capacity and favorable thermodynamics, complex hydrides are suitable for reversible storage. Further studies are required to overcome the kinetic barriers in complex hydrides by catalytic addition. A comparative study of the hydride properties with that of the constituting metal, and their inter relationships were carried out with many interesting features.^
Resumo:
A growing human population, shifting human dietary habits, and climate change are negatively affecting global ecosystems on a massive scale. Expanding agricultural areas to feed a growing population drives extensive habitat loss, and climate change compounds stresses on both food security and ecosystems. Understanding the negative effects of human diet and climate change on agricultural and natural ecosystems provides a context within which potential technological and behavioral solutions can be proposed to help maximize conservation. The purpose of this research was to (1) examine the potential effects of climate change on the suitability of areas for commercial banana plantations in Latin America in the 2050s and how shifts in growing areas could affect protected areas; (2) test the ability of small unmanned aerial vehicles (UAVs) to map productivity of banana plantations as a potential tool for increasing yields and decreasing future plantation expansions; (3) project the effects on biodiversity of increasing rates of animal product consumption in developing megadiverse countries; and (4) estimate the capacity of global pasture biomass production and Fischer-Tropsch hydrocarbon synthesis (IGCC-FT) processing to meet electricity, gasoline and diesel needs. The results indicate that (1) the overall extent of areas suitable for conventional banana cultivation is predicted to decrease by 19% by 2050 because of a hotter and drier climate, but all current banana exporting countries are predicted to maintain some suitable areas with no effects on protected areas; (2) Spatial patterns of NDVI and ENDVI were significantly positively correlated with several metrics of fruit yield and quality, indicating that UAV systems can be used in banana plantations to map spatial patterns of fruit yield; (3) Livestock production is the single largest driver of habitat loss, and both livestock and feedstock production are increasing in developing biodiverse tropical countries. Reducing global animal product consumption should therefore be at the forefront of strategies aimed at reducing biodiversity loss; (4) Removing livestock from global pasture lands and instead utilizing the biomass production could produce enough energy to meet 100% of the electricity, gasoline, and diesel needs of over 40 countries with extensive grassland ecosystems, primarily in tropical developing countries.
Resumo:
This study is an analysis, on a trial basis, the fuel consumption of a Flex vehicle, operating with different mixtures of gasoline and ethanol in urban traffic, allowing more consistent results with the reality of the driver. Considering that most owners unaware of the possibility of mixing the fuel at the time of supply, thus enabling the choice of the most economically viable mixing gasoline / ethanol, resulting in lower costs and possibly a decrease in pollutant emission rates. Currently, there is a myth created by the people that supply ethanol only becomes viable if the value of not more than 70% of regular gasoline. However vehicles with this technology make it possible to operate with any percentage of mixture in the fuel tank, but today many of the owners of these vehicles do not use this feature effectively, because they ignore the possibility of mixing or the reason there is a deeper study regarding the optimal percentage of the mixture to provide a higher yield with a lower cost than proposed by the manufacturers.
Resumo:
This study is an analysis, on a trial basis, the fuel consumption of a Flex vehicle, operating with different mixtures of gasoline and ethanol in urban traffic, allowing more consistent results with the reality of the driver. Considering that most owners unaware of the possibility of mixing the fuel at the time of supply, thus enabling the choice of the most economically viable mixing gasoline / ethanol, resulting in lower costs and possibly a decrease in pollutant emission rates. Currently, there is a myth created by the people that supply ethanol only becomes viable if the value of not more than 70% of regular gasoline. However vehicles with this technology make it possible to operate with any percentage of mixture in the fuel tank, but today many of the owners of these vehicles do not use this feature effectively, because they ignore the possibility of mixing or the reason there is a deeper study regarding the optimal percentage of the mixture to provide a higher yield with a lower cost than proposed by the manufacturers.
Resumo:
Contamination of groundwater by BTX has been featured in recent decades. This type of contamination is due to small and continuous leaks at gas stations, causing serious problems to public health and the environment. Based on these antecedents, the search for new alternatives for treating contaminated water is shown to be essential. Therefore, this study aimed to evaluate the efficiency of removal of BTX by adsorption processes employing commercial alumina (Al2O3) and alumina supported with iron (Fe/Al2O3) as adsorbents. It was prepared by a in a synthetic gasoline solution and distilled water to simulate an actual sample. Initially, the adsorbents were characterized by techniques XRD, TG / DTG, XRF, FTIR and SEM/EDS, several trials, where he was placed synthetic solution to react in the presence of Al2O3 and Fe/Al2O3 in a closed, mechanical stirring system were performed varying the catalyst concentration 2, 4 and 6 g.L-1 every 0, 10, 30 60, 90 and 120 min, aliquots were taken and brought to analysis by gas chromatography flame ionization with headspace extraction. The results indicated that the absorbent which has higher BTX removal capacity was the Fe/Al2O3 at a concentration of 6 g.L-1, pH = 4 and time of 90 minutes reaction, resulting in an efficiency, resulting in a 86,5% efficiency for benzene removal, for the 95,4% toluene, 90,8% for ɱ,ρ- xylene and 93.7% for the θ-xylenes. Subsequently, we performed a kinetic study of the reactions, the values of experimental adsorption capacity (qe) showed agreement with the values of the theoretical adsorption capacity (qc) to the pseudo-second-order model in the adsorption tests using 2 and 6 gL-1 of Al2O3 and assays using 2, 4 and 6 g.L-1 of Fe/Al2O3. A fact corroborated by the R2 values, thus indicating that the chemical interactions are present in the adsorption mechanisms of BTX.
Resumo:
1. nowhere landscape, for clarinets, trombones, percussion, violins, and electronics
nowhere landscape is an eighty-minute work for nine performers, composed of acoustic and electronic sounds. Its fifteen movements invoke a variety of listening strategies, using slow change, stasis, layering, coincidence, and silence to draw attention to the sonic effects of the environment—inside the concert hall as well as the world outside of it. The work incorporates a unique stage set-up: the audience sits in close proximity to the instruments, facing in one of four different directions, while the musicians play from a number of constantly-shifting locations, including in front of, next to, and behind the audience.
Much of nowhere landscape’s material is derived from a collection of field recordings
made by the composer during a road trip from Springfield, MA to Douglas, WY along US- 20, a cross-country route made effectively obsolete by the completion of I-90 in the mid- 20th century. In an homage to artist Ed Ruscha’s 1963 book Twentysix Gasoline Stations, the composer made twenty-six recordings at gas stations along US-20. Many of the movements of nowhere landscape examine the musical potential of these captured soundscapes: familiar and anonymous, yet filled with poignancy and poetic possibility.
2. “The Map and the Territory: Documenting David Dunn’s Sky Drift”
In 1977, David Dunn recruited twenty-six musicians to play his work Sky Drift in the
Anza-Borrego Desert in Southern California. This outdoor performance was documented with photos and recorded with four stationary microphones to tape. A year later, Dunn presented the work in New York City as a “performance/documentation,” playing back the audio recording and projecting slides. In this paper I examine the consequences of this kind of act: what does it mean for a recording of an outdoor work to be shared at an indoor concert event? Can such a complex and interactive experience be successfully flattened into some kind of re-playable documentation? What can a recording capture and what must it exclude?
This paper engages with these questions as they relate to David Dunn’s Sky Drift and to similar works by Karlheinz Stockhausen and John Luther Adams. These case-studies demonstrate different solutions to the difficulty of documenting outdoor performances. Because this music is often heard from a variety of equally-valid perspectives—and because any single microphone only captures sound from one of these perspectives—the physical set-up of these kind of pieces complicate what it means to even “hear the music” at all. To this end, I discuss issues around the “work itself” and “aura” as well as “transparency” and “liveness” in recorded sound, bringing in thoughts and ideas from Walter Benjamin, Howard Becker, Joshua Glasgow, and others. In addition, the artist Robert Irwin and the composer Barry Truax have written about the conceptual distinctions between “the work” and “not- the-work”; these distinctions are complicated by documentation and recording. Without the context, the being-there, the music is stripped of much of its ability to communicate meaning.
Resumo:
The dissertation consists of three chapters related to the low-price guarantee marketing strategy and energy efficiency analysis. The low-price guarantee is a marketing strategy in which firms promise to charge consumers the lowest price among their competitors. Chapter 1 addresses the research question "Does a Low-Price Guarantee Induce Lower Prices'' by looking into the retail gasoline industry in Quebec where there was a major branded firm which started a low-price guarantee back in 1996. Chapter 2 does a consumer welfare analysis of low-price guarantees to drive police indications and offers a new explanation of the firms' incentives to adopt a low-price guarantee. Chapter 3 develops the energy performance indicators (EPIs) to measure energy efficiency of the manufacturing plants in pulp, paper and paperboard industry.
Chapter 1 revisits the traditional view that a low-price guarantee results in higher prices by facilitating collusion. Using accurate market definitions and station-level data from the retail gasoline industry in Quebec, I conducted a descriptive analysis based on stations and price zones to compare the price and sales movement before and after the guarantee was adopted. I find that, contrary to the traditional view, the stores that offered the guarantee significantly decreased their prices and increased their sales. I also build a difference-in-difference model to quantify the decrease in posted price of the stores that offered the guarantee to be 0.7 cents per liter. While this change is significant, I do not find the response in comeptitors' prices to be significant. The sales of the stores that offered the guarantee increased significantly while the competitors' sales decreased significantly. However, the significance vanishes if I use the station clustered standard errors. Comparing my observations and the predictions of different theories of modeling low-price guarantees, I conclude the empirical evidence here supports that the low-price guarantee is a simple commitment device and induces lower prices.
Chapter 2 conducts a consumer welfare analysis of low-price guarantees to address the antitrust concerns and potential regulations from the government; explains the firms' potential incentives to adopt a low-price guarantee. Using station-level data from the retail gasoline industry in Quebec, I estimated consumers' demand of gasoline by a structural model with spatial competition incorporating the low-price guarantee as a commitment device, which allows firms to pre-commit to charge the lowest price among their competitors. The counterfactual analysis under the Bertrand competition setting shows that the stores that offered the guarantee attracted a lot more consumers and decreased their posted price by 0.6 cents per liter. Although the matching stores suffered a decrease in profits from gasoline sales, they are incentivized to adopt the low-price guarantee to attract more consumers to visit the store likely increasing profits at attached convenience stores. Firms have strong incentives to adopt a low-price guarantee on the product that their consumers are most price-sensitive about, while earning a profit from the products that are not covered in the guarantee. I estimate that consumers earn about 0.3% more surplus when the low-price guarantee is in place, which suggests that the authorities should not be concerned and regulate low-price guarantees. In Appendix B, I also propose an empirical model to look into how low-price guarantees would change consumer search behavior and whether consumer search plays an important role in estimating consumer surplus accurately.
Chapter 3, joint with Gale Boyd, describes work with the pulp, paper, and paperboard (PP&PB) industry to provide a plant-level indicator of energy efficiency for facilities that produce various types of paper products in the United States. Organizations that implement strategic energy management programs undertake a set of activities that, if carried out properly, have the potential to deliver sustained energy savings. Energy performance benchmarking is a key activity of strategic energy management and one way to enable companies to set energy efficiency targets for manufacturing facilities. The opportunity to assess plant energy performance through a comparison with similar plants in its industry is a highly desirable and strategic method of benchmarking for industrial energy managers. However, access to energy performance data for conducting industry benchmarking is usually unavailable to most industrial energy managers. The U.S. Environmental Protection Agency (EPA), through its ENERGY STAR program, seeks to overcome this barrier through the development of manufacturing sector-based plant energy performance indicators (EPIs) that encourage U.S. industries to use energy more efficiently. In the development of the energy performance indicator tools, consideration is given to the role that performance-based indicators play in motivating change; the steps necessary for indicator development, from interacting with an industry in securing adequate data for the indicator; and actual application and use of an indicator when complete. How indicators are employed in EPA’s efforts to encourage industries to voluntarily improve their use of energy is discussed as well. The chapter describes the data and statistical methods used to construct the EPI for plants within selected segments of the pulp, paper, and paperboard industry: specifically pulp mills and integrated paper & paperboard mills. The individual equations are presented, as are the instructions for using those equations as implemented in an associated Microsoft Excel-based spreadsheet tool.
Resumo:
In the study, we establish centennial records of anthropogenic lead pollution at different locations in the North Atlantic (Iceland, USA, and Europe) by means of lead deposited in shells of the long-lived bivalve Arctica islandica. Due to local oceanographic and geological conditions we conclude that the lead concentrations in the Icelandic shell reflect natural influxes of lead into Icelandic waters. In comparison, the lead profile of the US shell is clearly driven by anthropogenic lead emissions transported from the continent to the ocean by westerly surface winds. Lead concentrations in the European North Sea shell, in contrast, are dominantly driven by local lead sources resulting in a much less conspicuous 1970s gasoline lead peak. In conclusion, the lead profiles of the three shells are driven by different influxes of lead, and yet, all support the applicability of Pb/Ca analyses of A. islandica shells to reconstruct location specific anthropogenic lead pollution.
Resumo:
Pb and Ba concentrations and Pb isotopic compositions are reported for firn core and snow pit samples from Victoria Land, Antarctica, dating from 1872 AD to 1994 AD. From variations in Pb/Ba ratios and Pb isotopic compositions, two periods of major Pb enhancements were identified, from 1891 to 1908 AD and from 1948 to 1994 AD. The earlier pollution event is attributed to Pb emissions from non-ferrous metal production and coal combustion in the Southern Hemisphere and is in excellent agreement with coincident pollution inputs reported in firn/ice cores from two other regions of Antarctica, at Coats Land and Law Dome. Using Pb isotopic systematics, it was calculated that ~50% of Pb deposited in Victoria Land in 1897 originated from anthropogenic emission sources. The more recent period of Pb enhancements, from 1948 to 1994 AD, corresponds to the introduction and widespread use of gasoline alkyl Pb additives in automobiles in the Southern Hemisphere, with anthropogenic Pb inputs averaging 60% of total Pb but with large uncertainty. Intra- and inter-annual variations in Pb concentrations and isotopic compositions were evaluated in snow pits samples corresponding to the period 1991-1994. Substantial variations in Pb/ Ba and 206Pb/207Pb ratios were detected but the absence of a regular seasonal pattern for these parameters suggests that the transport and deposition of aerosols to the Antarctic ice sheet are complex and vary from year to year.
Resumo:
Direct alcohol fuel cells (DAFCs) mostly use low molecular weight alcohols such as methanol and ethanol as fuels. However, short-chain alcohol molecules have a relative high membrane crossover rate in DAFCs and a low energy density. Long chain alcohols such as butanol have a higher energy density, as well as a lower membrane crossover rate compared to methanol and ethanol. Although a significant number of studies have been dedicated to low molecular weight alcohols in DAFCs, very few studies are available for longer chain alcohols such as butanol. A significant development in the production of biobutanol and its proposed application as an alternative fuel to gasoline in the past decade makes butanol an interesting candidate fuel for fuel cells. Different butanol isomers were compared in this study on various Pt and PtSn bimetallic catalysts for their electro-oxidation activities in acidic media. Clear distinctive behaviors were observed for each of the different butanol isomers using cyclic voltammetry (CV), indicating a difference in activity and the mechanism of oxidation. The voltammograms of both n-butanol and iso-butanol showed similar characteristic features, indicating a similar reaction mechanism, whereas 2-butanol showed completely different features; for example, it did not show any indication of poisoning. Ter-butanol was found to be inactive for oxidation on Pt. In situ FTIR and CV analysis showed that OHads was essential for the oxidation of primary butanol isomers which only forms at high potentials on Pt. In order to enhance the water oxidation and produce OHads at lower potentials, Pt was modified by the oxophilic metal Sn and the bimetallic PtSn was studied for the oxidation of butanol isomers. A significant enhancement in the oxidation of the 1° butanol isomers was observed on addition of Sn to the Pt, resulting in an oxidation peak at a potential ∼520 mV lower than that found on pure Pt. The higher activity of PtSn was attributed to the bifunctional mechanism on PtSn catalyst. The positive influence of Sn was also confirmed in the PtSn nanoparticle catalyst prepared by the modification of commercial Pt/C nanoparticle and a higher activity was observed for PtSn (3:1) composition. The temperature-dependent data showed that the activation energy for butanol oxidation reaction over PtSn/C is lower than that over Pt/C.
Resumo:
As the largest contributor to renewable energy, biomass (especially lignocellulosic biomass) has significant potential to address atmospheric emission and energy shortage issues. The bio-fuels derived from lignocellulosic biomass are popularly referred to as second-generation bio-fuels. To date, several thermochemical conversion pathways for the production of second-generation bio-fuels have shown commercial promise; however, most of these remain at various pre-commercial stages. In view of their imminent commercialization, it is important to conduct a profound and comprehensive comparison of these production techniques. Accordingly, the scope of this review is to fill this essential knowledge gap by mapping the entire value chain of second-generation bio-fuels, from technical, economic, and environmental perspectives. This value chain covers i) the thermochemical technologies used to convert solid biomass feedstock into easier-to-handle intermediates, such as bio-oil, syngas, methanol, and Fischer-Tropsch fuel; and ii) the upgrading technologies used to convert intermediates into end products, including diesel, gasoline, renewable jet fuels, hydrogen, char, olefins, and oxygenated compounds. This review also provides an economic and commercial assessment of these technologies, with the aim of identifying the most adaptable technology for the production of bio-fuels, fuel additives, and bio-chemicals. A detailed mapping of the carbon footprints of the various thermochemical routes to second-generation bio-fuels is also carried out. The review concludes by identifying key challenges and future trends for second-generation petroleum substitute bio-fuels.
Resumo:
LOPES, Jose Soares Batista et al. Application of multivariable control using artificial neural networks in a debutanizer distillation column.In: INTERNATIONAL CONGRESS OF MECHANICAL ENGINEERING - COBEM, 19, 5-9 nov. 2007, Brasilia. Anais... Brasilia, 2007
Resumo:
The objective was the development a methodology to label organic compounds with radioactive iodine (123I) from the reaction of organic compound with iodine nomochloride (ICL). The process begins with the production of 123ICl from the oxidation of potassium iodate in acid medium. The ICL labeled with 123I is extracted from aqueous phase using diethyl ether and then mixed with the organic compound to be labeled and the process is based on adding the radioactive iodine to the Carbon-Carbon double bonds of the organic compound. To measure the efficiency of the labeling process, in all stages samples were collected and the total activity of 123I was measure. The results show a production yield of 82% for lubricant oil and 85% for gasoline and diesel.
Resumo:
This work reports the synthesis of new fatty N-acylamino acids and N-acylamino esters from the C16:0, C18:0, C18:1, and C18:1(OH) fatty acid families and demonstrates the activity of these compounds as organogel agents. Compounds were heated and dissolved in various solvents (n-hexane, toluene, and gasoline). Only saturated C16:0 and C18:0 derived from alanine were able to form gels in toluene, and saturated C16:0 derived from phenylalanine showed gelation in n-hexane. This is the first evidence that fatty N-acylamino esters and N-acylamino acid derivatives of l-serine and fatty acids C16:0, C18:0, and C18:1 are able to form gels with hexane. This observation confirms the importance of the hydroxyl group in the segment derivative of l-serine in forming good gels.
Resumo:
LOPES, Jose Soares Batista et al. Application of multivariable control using artificial neural networks in a debutanizer distillation column.In: INTERNATIONAL CONGRESS OF MECHANICAL ENGINEERING - COBEM, 19, 5-9 nov. 2007, Brasilia. Anais... Brasilia, 2007