967 resultados para Gas-phase Acidities


Relevância:

40.00% 40.00%

Publicador:

Resumo:

A SPME-GC-MS/MS method for the determination of eight organophosphorus pesticides (azinphos-methyl, chlorpyriphos, chlorpyriphos-methyl, diazinon, fenitrothion, fenthion, malathion, and methidathion) in still and fortified wine was developed. The extraction procedure is simple, solvent free, and without any sample pretreatment. Limits of detection (LOD) and quantitation (LOQ) values in the range 0.1–14.3 lg/L and 0.2–43.3 lg/L, respectively, were obtained. The LOQ values are below the maximum residue levels (MRLs) established by European Regulation for grapes, with the exception of methidathion. Coefficients of correlation (R2) higher than 0.99 were obtained for the majority of the pesticides, in all different wines analyzed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present work describes a solid-phase microextraction (SPME) gas chromatography_tandem mass spectrometry (MS/MS) method to quantify 24 pesticides in fortified white wine and fortified red wine. In this study “fortified wine” refers to a wine in which fermentation is arrested before completion by alcohol distillate addition, allowing sugar and alcoholic contents to be higher (around 80-100 g/L total sugars and 19-22% alcohol strength (v/v)). The analytical method showed good linearity, presenting correlation coefficients (R2) ≥ 0.989 for all compounds. Limits of detection (LOD) and quantitation (LOQ) in the ranges of 0.05-72.35 and 0.16-219.23 μg/L, respectively, were obtained. LOQs are below the maximum residue levels (MRL) set by European Regulation for grapes. The proposed method was applied to 17 commercial fortified wines. The analyzed pesticides were not detected in the wines tested.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Pine forests constitute some of the most important renewable resources supplying timber, paper and chemical industries, among other functions. Characterization of the volatiles emitted by different Pinus species has proven to be an important tool to decode the process of host tree selection by herbivore insects, some of which cause serious economic damage to pines. Variations in the relative composition of the bouquet of semiochemicals are responsible for the outcome of different biological processes, such as mate finding, egg-laying site recognition and host selection. The volatiles present in phloem samples of four pine species, P. halepensis, P. sylvestris, P. pinaster and P. pinea, were identified and characterized with the aim of finding possible host-plant attractants for native pests, such as the bark beetle Tomicus piniperda. The volatile compounds emitted by phloem samples of pines were extracted by headspace solid-phase micro extraction, using a 2 cm 50/30 mm divinylbenzene/carboxen/polydimethylsiloxane table flex solid-phase microextraction fiber and its contents analyzed by high-resolution gas chromatography, using flame ionization and a non polar and chiral column phases. The components of the volatile fraction emitted by the phloem samples were identified by mass spectrometry using time-of-flight and quadrupole mass analyzers. The estimated relative composition was used to perform a discriminant analysis among pine species, by means of cluster and principal component analysis. It can be concluded that it is possible to discriminate pine species based on the monoterpenes emissions of phloem samples.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This dissertation is based on 5 articles which deal with reaction mechanisms of the following selected industrially important organic reactions: 1. dehydrocyclization of n-butylbenzene to produce naphthalene 2. dehydrocyclization of 1-(p-tolyl)-2-methylbutane (MB) to produce 2,6-dimethylnaphthalene 3. esterification of neopentyl glycol (NPG) with different carboxylic acids to produce monoesters 4. skeletal isomerization of 1-pentene to produce 2-methyl-1-butene and 2-methyl-2-butene The results of initial- and integral-rate experiments of n-butylbenzene dehydrocyclization over selfmade chromia/alumina catalyst were applied when investigating reaction 2. Reaction 2 was performed using commercial chromia/alumina of different acidity, platina on silica and vanadium/calcium/alumina as catalysts. On all catalysts used for the dehydrocyclization, major reactions were fragmentation of MB and 1-(p-tolyl)-2-methylbutenes (MBes), dehydrogenation of MB, double bond transfer, hydrogenation and 1,6-cyclization of MBes. Minor reactions were 1,5-cyclization of MBes and methyl group fragmentation of 1,6- cyclization products. Esterification reactions of NPG were performed using three different carboxylic acids: propionic, isobutyric and 2-ethylhexanoic acid. Commercial heterogeneous gellular (Dowex 50WX2), macroreticular (Amberlyst 15) type resins and homogeneous para-toluene sulfonic acid were used as catalysts. At first NPG reacted with carboxylic acids to form corresponding monoester and water. Then monoester esterified with carboxylic acid to form corresponding diester. In disproportionation reaction two monoester molecules formed NPG and corresponding diester. All these three reactions can attain equilibrium. Concerning esterification, water was removed from the reactor in order to prevent backward reaction. Skeletal isomerization experiments of 1-pentene were performed over HZSM-22 catalyst. Isomerization reactions of three different kind were detected: double bond, cis-trans and skeletal isomerization. Minor side reaction were dimerization and fragmentation. Monomolecular and bimolecular reaction mechanisms for skeletal isomerization explained experimental results almost equally well. Pseudohomogeneous kinetic parameters of reactions 1 and 2 were estimated by usual least squares fitting. Concerning reactions 3 and 4 kinetic parameters were estimated by the leastsquares method, but also the possible cross-correlation and identifiability of parameters were determined using Markov chain Monte Carlo (MCMC) method. Finally using MCMC method, the estimation of model parameters and predictions were performed according to the Bayesian paradigm. According to the fitting results suggested reaction mechanisms explained experimental results rather well. When the possible cross-correlation and identifiability of parameters (Reactions 3 and 4) were determined using MCMC method, the parameters identified well, and no pathological cross-correlation could be seen between any parameter pair.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A mathematical model is developed for gas-solids flows in circulating fluidized beds. An Eulerian formulation is followed based on the two-fluids model approach where both the fluid and the particulate phases are treated as a continuum. The physical modelling is discussed, including the formulation of boundary conditions and the description of the numerical methodology. Results of numerical simulation are presented and discussed. The model is validated through comparison to experiment, and simulation is performed to investigate the effects on the flow hydrodynamics of the solids viscosity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents the experimental characterization of hydrodynamics and gas-liquid mass transfer in a three-phase fluidized bed containing polystyrene and nylon particles. The influence of gas and liquid velocities on phase holdups and volumetric gas-liquid mass transfer coefficient was investigated for flow conditions similar to those applied in biotechnological process. The phase holdups were obtained by the pressure profile technique. The volumetric gas-liquid mass transfer coefficient was obtained adjusting the experimental concentration profiles of dissolved oxygen in the liquid phase with the predictions of the axial dispersion model. According to experimental results the liquid holdup increases with the gas velocity, whereas the solid holdup decreases. The gas holdup increases significantly with the increase in gas velocity, and it shows for the three-phase fluidized bed comparable values or larger than those of bubble column. The volumetric gas-liquid mass transfer coefficient increases significantly with an increase in the air velocity for both bubble column and fluidized beds. In addition, in the operational condition of high liquid velocity, the presence of low-density particles in the bed increased the gas-liquid mass transfer, and thus the volumetric mass transfer coefficient values obtained in the fluidized bed were comparable or larger than those of bubble column.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

(E)-2-nonenal is considered an important off-flavor of beer, related to the flavor of beer staling. In this study, a new method for determination of (E)-2-nonenal in beer using headspace solid-phase microextraction and gas chromatographic coupled mass spectrometry (HS-SPME-GC-MS) was developed and applied in Brazilian beer samples. The extractions were carried out in CAR-PDMS (carboxen-polydimethylsiloxane) fiber and the best results were found with 15 minutes of equilibrium and 90 minutes of extraction at 50 °C. The method was linear in the range from 0.02 to 4.0 μg.L-1 with correlation coefficient of 0.9994. The limits of detection and quantification were 0.01 and 0.02 μg.L-1, respectively. 96.5% of recovery and 4% precision (RSD) were obtained in the fortification of beer samples with 2.0 μg.L-1 of (E)-2-nonenal. The developed method proved to be simple, efficient and highly sensitive to the determination of this analyte being easily applied in the quality control of the brewery. (E)-2-nonenal was found in all beer samples analyzed with levels between 0.17 and 0.42 μg.L-1.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In order to determine the variability of pequi tree (Caryocar brasiliense Camb.) populations, volatile compounds from fruits of eighteen trees representing five populations were extracted by headspace solid-phase microextraction and analyzed by gas chromatography-mass spectrometry. Seventy-seven compounds were identified, including esters, hydrocarbons, terpenoids, ketones, lactones, and alcohols. Several compounds had not been previously reported in the pequi fruit. The amount of total volatile compounds and the individual compound contents varied between plants. The volatile profile enabled the differentiation of all of the eighteen plants, indicating that there is a characteristic profile in terms of their origin. The use of Principal Component Analysis and Cluster Analysis enabled the establishment of markers (dendrolasin, ethyl octanoate, ethyl 2-octenoate and β-cis-ocimene) that discriminated among the pequi trees. According to the Cluster Analysis, the plants were classified into three main clusters, and four other plants showed a tendency to isolation. The results from multivariate analysis did not always group plants from the same population together, indicating that there is greater variability within the populations than between pequi tree populations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Factors affecting the detennination of PAHs by capillary GC/MS were studied. The effect of the initial column temperature and the injection solvent on the peak areas and heights of sixteen PAHs, considered as priority pollutants, USillg crosslinked methyl silicone (DB!) and 5% diphenyl, 94% dimethyl, 1% vinyl polysiloxane (DBS) columns was examined. The possibility of using high boiling point alcohols especially butanol, pentanol, cyclopentanol, and hexanol as injection solvents was investigated. Studies were carried out to optimize the initial column temperature for each of the alcohols. It was found that the optimum initial column temperature is dependent on the solvent employed. The peak areas and heights of the PAHs are enhanced when the initial column temperature is 10-20 c above the boiling point of the solvent using DB5 column, and the same or 10 C above the boiling point of the solvent using DB1 column. Comparing the peak signals of the PAHs using the alcohols, p-xylene, n-octane, and nonane as injection solvents, hexanol gave the greatest peak areas and heights of the PAHs particularly the late-eluted peaks. The detection limits were at low pg levels, ranging from 6.0 pg for fluorene t9 83.6 pg for benzo(a)pyrene. The effect of the initial column temperature on the peak shape and the separation efficiency of the PARs was also studied using DB1 and DB5 columns. Fronting or splitting of the peaks was obseIVed at very low initial column temperature. When high initial column temperature was used, tailing of the peaks appeared. Great difference between DB! and.DB5 columns in the range of the initial column temperature in which symmetrical.peaks of PAHs can be obtained is observed. Wider ranges were shown using DB5 column. Resolution of the closely-eluted PAHs was also affected by the initial column temperature depending on the stationary phase employed. In the case of DB5, only the earlyeluted PAHs were affected; whereas, with DB1, all PAHs were affected. An analytical procedure utilizing solid phase extraction with bonded phase silica (C8) cartridges combined with GC/MS was developed to analyze PAHs in water as an alternative method to those based on the extraction with organic solvent. This simple procedure involved passing a 50 ml of spiked water sample through C8 bonded phase silica cartridges at 10 ml/min, dried by passing a gentle flow of nitrogen at 20 ml/min for 30 sec, and eluting the trapped PAHs with 500 Jll of p-xylene at 0.3 ml/min. The recoveries of PAHs were greater than 80%, with less than 10% relative standard deviations of nine determinations. No major contaminants were present that could interfere with the recognition of PAHs. It was also found that these bonded phase silica cartridges can be re-used for the extraction of PAHs from water.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A method for the determination of volatile organic compounds (VOCs) in recycled polyethylene terephthalate and high-density polyethylene using headspace sampling by solid-phase microextraction and gas chromatography coupled to mass spectrometry detection is presented. This method was used to evaluate the efficiency of cleaning processes for VOC removal from recycled PET. In addition, the method was also employed to evaluate the level of VOC contamination in multilayer packaging material containing recycled HDPE material. The optimisation of the extraction procedure for volatile compounds was performed and the best extraction conditions were found using a 75 mu m carboxen-polydimethylsiloxane (CAR-PDMS) fibre for 20 min at 60 degrees C. The validation parameters for the established method were linear range, linearity, sensitivity, precision (repeatability), accuracy (recovery) and detection and quantification limits. The results indicated that the method could easily be used in quality control for the production of recycled PET and HDPE. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The volatile composition from four types of multifloral Portuguese (produced in Madeira Island) honeys was investigated by a suitable analytical procedure based on dynamic headspace solid-phase microextraction (HS-SPME) followed by thermal desorption gas chromatography–quadrupole mass spectrometry detection (GC–qMS). The performance of five commercially available SPME fibres: 100 μm polydimethylsiloxane, PDMS; 85 μm polyacrylate, PA; 50/30 μm divinylbenzene/carboxen on polydimethylsiloxane, DVB/CAR/PDMS (StableFlex); 75 μm carboxen/polydimethylsiloxane, CAR/PDMS, and 65 μm carbowax/divinylbenzene, CW/DVB; were evaluated and compared. The highest amounts of extract, in terms of the maximum signal obtained for the total volatile composition, were obtained with a DVB/CAR/PDMS coating fibre at 60 °C during an extraction time of 40 min with a constant stirring at 750 rpm, after saturating the sample with NaCl (30%). Using this methodology more than one hundred volatile compounds, belonging to different biosynthetic pathways were identified, including monoterpenols, C13-norisoprenoids, sesquiterpenes, higher alcohols, ethyl esters and fatty acids. The main components of the HS-SPME samples of honey were in average ethanol, hotrienol, benzeneacetaldehyde, furfural, trans-linalool oxide and 1,3-dihydroxy-2-propanone.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The analysis of volatile compounds in Funchal, Madeira, Mateus and Perry Vidal cultivars of Annona cherimola Mill. (cherimoya) was carried out by headspace solid-phase microextraction (HS-SPME) combined with gas chromatography–quadrupole mass spectrometry detection (GC–qMSD). HS-SPME technique was optimized in terms of fibre selection, extraction time, extraction temperature and sample amount to reach the best extraction efficiency. The best result was obtained with 2 g of sample, using a divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) fibre for 30 min at 30 °C under constant magnetic stirring (800 rpm). After optimization of the extraction methodology, all the cherimoya samples were analysed with the best conditions that allowed to identify about 60 volatile compounds. The major compounds identified in the four cherimoya cultivars were methyl butanoate, butyl butanoate, 3-methylbutyl butanoate, 3-methylbutyl 3-methylbutanoate and 5-hydroxymethyl-2-furfural. These compounds represent 69.08 ± 5.22%, 56.56 ± 15.36%, 56.69 ± 9.28% and 71.82 ± 1.29% of the total volatiles for Funchal, Madeira, Mateus and Perry Vidal cultivars, respectively. This study showed that each cherimoya cultivars have 40 common compounds, corresponding to different chemical families, namely terpenes, esters, alcohols, fatty acids and carbonyl compounds and using PCA, the volatile composition in terms of average peak areas, provided a suitable tool to differentiate among the cherimoya cultivars.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An analytical methodology based on headspace solid phase microextraction (HS-SPME) combined with comprehensive two-dimensional gas chromatography—time-of-flight mass spectrometry (GC × GC–ToFMS) was developed for the identification and quantification of the toxic contaminant ethyl carbamate (EC) directly in fortified wines. The method performance was assessed for dry/medium dry and sweet/medium sweet model wines, and for quantification purposes, calibration plots were performed for both matrices using the ion extraction chromatography (IEC) mode (m/z 62). Good linearity was obtained with a regression coefficient (r2) higher than 0.981. A good precision was attained (R.S.D. <20%) and low detection limits (LOD) were achieved for dry (4.31 μg/L) and sweet (2.75 μg/L) model wines. The quantification limits (LOQ) and recovery for dry wines were 14.38 μg/L and 88.6%, whereas for sweet wines were 9.16 μg/L and 99.4%, respectively. The higher performance was attainted with sweet model wine, as increasing of glucose content improves the volatile compound in headspace, and a better linearity, recovery and precision were achieved. The analytical methodology was applied to analyse 20 fortified Madeira wines including different types of wine (dry, medium dry, sweet, and medium sweet) obtained from several harvests in Madeira Island (Portugal). The EC levels ranged from 54.1 μg/L (medium dry) to 162.5 μg/L (medium sweet).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Allergicasthmarepresentsanimportantpublichealthissuewithsignificantgrowthovertheyears,especially in the paediatric population. Exhaled breath is a non-invasive, easily performed and rapid method forobtainingsamplesfromthelowerrespiratorytract.Inthepresentmanuscript,themetabolicvolatile profiles of allergic asthma and control children were evaluated by headspace solid-phase microextraction combined with gas chromatography–quadrupole mass spectrometry (HS-SPME/GC–qMS). The lack ofstudiesinbreathofallergicasthmaticchildrenbyHS-SPMEledtothedevelopmentofanexperimental design to optimize SPME parameters. To fulfil this objective, three important HS-SPME experimental parameters that influence the extraction efficiency, namely fibre coating, temperature and time extractions were considered. The selected conditions that promoted higher extraction efficiency corresponding to the higher GC peak areas and number of compounds were: DVB/CAR/PDMS coating fibre, 22◦C and 60min as the extraction temperature and time, respectively. The suitability of two containers, 1L Tedlar® bags and BIOVOC®, for breath collection and intra-individual variability were also investigated. The developed methodology was then applied to the analysis of children exhaled breath with allergicasthma(35),fromwhich13hadalsoallergicrhinitis,andhealthycontrolchildren(15),allowing to identify 44 volatiles distributed over the chemical families of alkanes (linear and ramified) ketones, aromatic hydrocarbons, aldehydes, acids, among others. Multivariate studies were performed by Partial LeastSquares–DiscriminantAnalysis(PLS–DA)usingasetof28selectedmetabolitesanddiscrimination between allergic asthma and control children was attained with a classification rate of 88%. The allergic asthma paediatric population was characterized mainly by the compounds linked to oxidative stress, such as alkanes and aldehydes. Furthermore, more detailed information was achieved combining the volatile metabolic data, suggested by PLS–DA model, and clinical data.