951 resultados para Garment sizes.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Problem The Manchester Driver Behaviour Questionnaire (DBQ) is the most commonly used self-report tool in traffic safety research and applied settings. It has been claimed that the violation factor of this instrument predicts accident involvement, which was supported by a previous meta-analysis. However, that analysis did not test for methodological effects, or include contacting researchers to obtain unpublished results. Method The present study re-analysed studies on prediction of accident involvement from DBQ factors, including lapses, and many unpublished effects. Tests of various types of dissemination bias and common method variance were undertaken. Results Outlier analysis showed that some effects were probably not reliable data, but excluding them did not change the results. For correlations between violations and crashes, tendencies for published effects to be larger than unpublished ones and for effects to decrease over time were observed, but were not significant. Also, analysis using the proxy of the mean of accidents in studies indicated that studies where effects for violations are unknown have smaller effect sizes. These differences indicate dissemination bias. Studies using self-reported accidents as dependent variables had much larger effects than those using recorded accident data. Also, zero-order correlations were larger than partial correlations that controlled for exposure. Similarly, violations/accidents effects were strong only when there was also a strong correlation between accidents and exposure. Overall, the true effect is probably very close to zero (r<.07) for violations versus traffic accident involvement, depending upon which systematic tendencies in the data are controlled for. Conclusions: Methodological factors and dissemination bias have inflated the mean effect size of the DBQ in the published literature. Strong evidence of various artefactual effects is apparent. Practical Applications A greater level of care should be taken if the DBQ continues to be used in traffic safety research. Also, validation of self-reports should be more comprehensive in the future, taking into account the possibility of common method variance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We extended genetic linkage analysis - an analysis widely used in quantitative genetics - to 3D images to analyze single gene effects on brain fiber architecture. We collected 4 Tesla diffusion tensor images (DTI) and genotype data from 258 healthy adult twins and their non-twin siblings. After high-dimensional fluid registration, at each voxel we estimated the genetic linkage between the single nucleotide polymorphism (SNP), Val66Met (dbSNP number rs6265), of the BDNF gene (brain-derived neurotrophic factor) with fractional anisotropy (FA) derived from each subject's DTI scan, by fitting structural equation models (SEM) from quantitative genetics. We also examined how image filtering affects the effect sizes for genetic linkage by examining how the overall significance of voxelwise effects varied with respect to full width at half maximum (FWHM) of the Gaussian smoothing applied to the FA images. Raw FA maps with no smoothing yielded the greatest sensitivity to detect gene effects, when corrected for multiple comparisons using the false discovery rate (FDR) procedure. The BDNF polymorphism significantly contributed to the variation in FA in the posterior cingulate gyrus, where it accounted for around 90-95% of the total variance in FA. Our study generated the first maps to visualize the effect of the BDNF gene on brain fiber integrity, suggesting that common genetic variants may strongly determine white matter integrity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Robust and automatic non-rigid registration depends on many parameters that have not yet been systematically explored. Here we determined how tissue classification influences non-linear fluid registration of brain MRI. Twin data is ideal for studying this question, as volumetric correlations between corresponding brain regions that are under genetic control should be higher in monozygotic twins (MZ) who share 100% of their genes when compared to dizygotic twins (DZ) who share half their genes on average. When these substructure volumes are quantified using tensor-based morphometry, improved registration can be defined based on which method gives higher MZ twin correlations when compared to DZs, as registration errors tend to deplete these correlations. In a study of 92 subjects, higher effect sizes were found in cumulative distribution functions derived from statistical maps when performing tissue classification before fluid registration, versus fluidly registering the raw images. This gives empirical evidence in favor of pre-segmenting images for tensor-based morphometry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Imaging genetics aims to discover how variants in the human genome influence brain measures derived from images. Genome-wide association scans (GWAS) can screen the genome for common differences in our DNA that relate to brain measures. In small samples, GWAS has low power as individual gene effects are weak and one must also correct for multiple comparisons across the genome and the image. Here we extend recent work on genetic clustering of images, to analyze surface-based models of anatomy using GWAS. We performed spherical harmonic analysis of hippocampal surfaces, automatically extracted from brain MRI scans of 1254 subjects. We clustered hippocampal surface regions with common genetic influences by examining genetic correlations (r(g)) between the normalized deformation values at all pairs of surface points. Using genetic correlations to cluster surface measures, we were able to boost effect sizes for genetic associations, compared to clustering with traditional phenotypic correlations using Pearson's r.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Combining datasets across independent studies can boost statistical power by increasing the numbers of observations and can achieve more accurate estimates of effect sizes. This is especially important for genetic studies where a large number of observations are required to obtain sufficient power to detect and replicate genetic effects. There is a need to develop and evaluate methods for joint-analytical analyses of rich datasets collected in imaging genetics studies. The ENIGMA-DTI consortium is developing and evaluating approaches for obtaining pooled estimates of heritability through meta-and mega-genetic analytical approaches, to estimate the general additive genetic contributions to the intersubject variance in fractional anisotropy (FA) measured from diffusion tensor imaging (DTI). We used the ENIGMA-DTI data harmonization protocol for uniform processing of DTI data from multiple sites. We evaluated this protocol in five family-based cohorts providing data from a total of 2248 children and adults (ages: 9-85) collected with various imaging protocols. We used the imaging genetics analysis tool, SOLAR-Eclipse, to combine twin and family data from Dutch, Australian and Mexican-American cohorts into one large "mega-family". We showed that heritability estimates may vary from one cohort to another. We used two meta-analytical (the sample-size and standard-error weighted) approaches and a mega-genetic analysis to calculate heritability estimates across-population. We performed leave-one-out analysis of the joint estimates of heritability, removing a different cohort each time to understand the estimate variability. Overall, meta- and mega-genetic analyses of heritability produced robust estimates of heritability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We used diffusion tensor magnetic resonance imaging (DTI) to reveal the extent of genetic effects on brain fiber microstructure, based on tensor-derived measures, in 22 pairs of monozygotic (MZ) twins and 23 pairs of dizygotic (DZ) twins (90 scans). After Log-Euclidean denoising to remove rank-deficient tensors, DTI volumes were fluidly registered by high-dimensional mapping of co-registered MP-RAGE scans to a geometrically-centered mean neuroanatomical template. After tensor reorientation using the strain of the 3D fluid transformation, we computed two widely used scalar measures of fiber integrity: fractional anisotropy (FA), and geodesic anisotropy (GA), which measures the geodesic distance between tensors in the symmetric positive-definite tensor manifold. Spatial maps of intraclass correlations (r) between MZ and DZ twins were compared to compute maps of Falconer's heritability statistics, i.e. the proportion of population variance explainable by genetic differences among individuals. Cumulative distribution plots (CDF) of effect sizes showed that the manifold measure, GA, comparably the Euclidean measure, FA, in detecting genetic correlations. While maps were relatively noisy, the CDFs showed promise for detecting genetic influences on brain fiber integrity as the current sample expands.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Twin studies are a major research direction in imaging genetics, a new field, which combines algorithms from quantitative genetics and neuroimaging to assess genetic effects on the brain. In twin imaging studies, it is common to estimate the intraclass correlation (ICC), which measures the resemblance between twin pairs for a given phenotype. In this paper, we extend the commonly used Pearson correlation to a more appropriate definition, which uses restricted maximum likelihood methods (REML). We computed proportion of phenotypic variance due to additive (A) genetic factors, common (C) and unique (E) environmental factors using a new definition of the variance components in the diffusion tensor-valued signals. We applied our analysis to a dataset of Diffusion Tensor Images (DTI) from 25 identical and 25 fraternal twin pairs. Differences between the REML and Pearson estimators were plotted for different sample sizes, showing that the REML approach avoids severe biases when samples are smaller. Measures of genetic effects were computed for scalar and multivariate diffusion tensor derived measures including the geodesic anisotropy (tGA) and the full diffusion tensors (DT), revealing voxel-wise genetic contributions to brain fiber microstructure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pattern of structural brain alterations associated with major depressive disorder (MDD) remains unresolved. This is in part due to small sample sizes of neuroimaging studies resulting in limited statistical power, disease heterogeneity and the complex interactions between clinical characteristics and brain morphology. To address this, we meta-analyzed three-dimensional brain magnetic resonance imaging data from 1728 MDD patients and 7199 controls from 15 research samples worldwide, to identify subcortical brain volumes that robustly discriminate MDD patients from healthy controls. Relative to controls, patients had significantly lower hippocampal volumes (Cohen’s d=−0.14, % difference=−1.24). This effect was driven by patients with recurrent MDD (Cohen’s d=−0.17, % difference=−1.44), and we detected no differences between first episode patients and controls. Age of onset ⩽21 was associated with a smaller hippocampus (Cohen’s d=−0.20, % difference=−1.85) and a trend toward smaller amygdala (Cohen’s d=−0.11, % difference=−1.23) and larger lateral ventricles (Cohen’s d=0.12, % difference=5.11). Symptom severity at study inclusion was not associated with any regional brain volumes. Sample characteristics such as mean age, proportion of antidepressant users and proportion of remitted patients, and methodological characteristics did not significantly moderate alterations in brain volumes in MDD. Samples with a higher proportion of antipsychotic medication users showed larger caudate volumes in MDD patients compared with controls. This currently largest worldwide effort to identify subcortical brain alterations showed robust smaller hippocampal volumes in MDD patients, moderated by age of onset and first episode versus recurrent episode status.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose The purpose of this paper is to explore the role of marketing in today's enterprises and examines the antecedents of the marketing department's influence and its relationship with market orientation and firm performance. Design/methodology/approach Data were collected from the West (i.e. the USA and Europe) and the East (i.e. Asia). Partial least squares (PLS) was used to estimate structural models. Findings The findings support the idea that a strong and influential marketing department contributes positively to firm performance. This finding holds for Western and Asian, and for small/medium and large firms alike. Second, the marketing department's influence in a firm depends more on its responsibilities and resources, and less on internal contingency factors (i.e. a firm's competitive strategy or institutional attributes). Third, a marketing department's influence in the West affects firm performance both directly and indirectly (via market orientation). In contrast, this relationship is fully mediated among Eastern firms. Fourth, low-cost strategies enhance the influence of a firm's marketing department in the East, but not in the West. Research limitations/implications The paper assumes explicitly that a marketing department's influence is an antecedent of its market orientation. While the paper finds support for this link, the paper did not test for dual causality between the constructs. Originality/value Countering the frequent claim in anecdotal and journalistic work that the role of the marketing department diminishes, the findings show that across different geographic regions and firm sizes, strong marketing departments improve firm performance (especially in the marketing-savvy West), and that they should continue to play an important role in firms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soil microorganisms are critical to ecosystem functioning and the maintenance of soil fertility. However, despite global increases in the inputs of nitrogen (N) and phosphorus (P) to ecosystems due to human activities, we lack a predictive understanding of how microbial communities respond to elevated nutrient inputs across environmental gradients. Here we used high-throughput sequencing of marker genes to elucidate the responses of soil fungal, archaeal, and bacterial communities using an N and P addition experiment replicated at 25 globally distributed grassland sites. We also sequenced metagenomes from a subset of the sites to determine how the functional attributes of bacterial communities change in response to elevated nutrients. Despite strong compositional differences across sites, microbial communities shifted in a consistent manner with N or P additions, and the magnitude of these shifts was related to the magnitude of plant community responses to nutrient inputs. Mycorrhizal fungi and methanogenic archaea decreased in relative abundance with nutrient additions, as did the relative abundances of oligotrophic bacterial taxa. The metagenomic data provided additional evidence for this shift in bacterial life history strategies because nutrient additions decreased the average genome sizes of the bacterial community members and elicited changes in the relative abundances of representative functional genes. Our results suggest that elevated N and P inputs lead to predictable shifts in the taxonomic and functional traits of soil microbial communities, including increases in the relative abundances of faster-growing, copiotrophic bacterial taxa, with these shifts likely to impact belowground ecosystems worldwide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Different human activities like combustion of fossil fuels, biomass burning, industrial and agricultural activities, emit a large amount of particulates into the atmosphere. As a consequence, the air we inhale contains significant amount of suspended particles, including organic and inorganic solids and liquids, as well as various microorganism, which are solely responsible for a number of pulmonary diseases. Developing a numerical model for transport and deposition of foreign particles in realistic lung geometry is very challenging due to the complex geometrical structure of the human lung. In this study, we have numerically investigated the airborne particle transport and its deposition in human lung surface. In order to obtain the appropriate results of particle transport and deposition in human lung, we have generated realistic lung geometry from the CT scan obtained from a local hospital. For a more accurate approach, we have also created a mucus layer inside the geometry, adjacent to the lung surface and added all apposite mucus layer properties to the wall surface. The Lagrangian particle tracking technique is employed by using ANSYS FLUENT solver to simulate the steady-state inspiratory flow. Various injection techniques have been introduced to release the foreign particles through the inlet of the geometry. In order to investigate the effects of particle size on deposition, numerical calculations are carried out for different sizes of particles ranging from 1 micron to 10 micron. The numerical results show that particle deposition pattern is completely dependent on its initial position and in case of realistic geometry; most of the particles are deposited on the rough wall surface of the lung geometry instead of carinal region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Traffic law enforcement sanctions can impact on road user behaviour through general and specific deterrence mechanisms. The manner in which specific deterrence can influence recidivist behaviour can be conceptualised in different ways. While any reduction in speeding will have road safety benefits, the ways in which a ‘reduction’ is determined deserves greater methodological attention and has implications for countermeasure evaluation more generally. The primary aim of this research was to assess the specific deterrent impact of penalty increases for speeding offences in Queensland, Australia, in 2003 on two cohorts of drivers detected for speeding prior to and after the penalty changes were investigated. Since the literature is relatively silent on how to assess recidivism in the speeding context, the secondary research aim was to contribute to the literature regarding ways to conceptualise and measure specific deterrence in the speeding context. We propose a novel way of operationalising four measures which reflect different ways in which a specific deterrence effect could be conceptualised: (1) the proportion of offenders who re-offended in the follow up period; (2) the overall frequency of re-offending in the follow up period; (3) the length of delay to re-offence among those who re-offended; and (4) the average number of re-offences during the follow up period among those who re-offended. Consistent with expectations, results suggested an absolute deterrent effect of penalty changes, as evidenced by significant reductions in the proportion of drivers who re-offended and the overall frequency of re-offending, although effect sizes were small. Contrary to expectations, however, there was no evidence of a marginal specific deterrent effect among those who re-offended, with a significant reduction in the length of time to re-offence and no significant change in the average number of offences committed. Additional exploratory analyses investigating potential influences of the severity of the index offence, offence history, and method of detection revealed mixed results. Access to additional data from various sources suggested that the main findings were not influenced by changes in speed enforcement activity, public awareness of penalty changes, or driving exposure during the study period. Study limitations and recommendations for future research are discussed with a view to promoting more extensive evaluations of penalty changes and better understanding of how such changes may impact on motorists’ perceptions of enforcement and sanctions, as well as on recidivist behaviour.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives: The aim of the current study was to determine the contribution of interleukin (IL) 1 gene cluster polymorphisms previously implicated in susceptibility for ankylosing spondylitis (AS) to AS susceptibility in different populations worldwide. Methods: Nine polymorphisms in the IL1 gene cluster members IL1A (rs2856836, rs17561 and rs1894399), IL1B (rs16944), IL1F10 (rs3811058) and IL1RN (rs419598, the IL1RA VNTR, rs315952 and rs315951) were genotyped in 2675 AS cases and 2592 healthy controls recruited in 12 different centres in 10 countries. Association of variants with AS was tested by Mantel-Haenszel random effects analysis. Results: Strong association was observed with three single nucleotide polymorphisms (SNPs) in the IL1A gene (rs2856836, rs17561, rs1894399, p = 0.0036, 0.000019 and 0.0003, respectively). There was no evidence of significant heterogeneity of effects between centres, and no evidence of non-combinability of findings. The population attributable risk fraction of these variants in Caucasians is estimated at 4-6%. Conclusions: This study confirms that IL1A is associated with susceptibility to AS. Association of the other IL1 gene complex members could not be excluded in specific populations. Prospective meta-analysis is a useful tool in confirmation studies of genes associated with complex genetic disorders such as AS, providing sufficiently large sample sizes to produce robust findings often not achieved in smaller individual cohorts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective To investigate differences in genetic risk factors for rheumatoid arthritis (RA) in Han Chinese as compared with Europeans. Methods A genome-wide association study was conducted in China with 952 patients and 943 controls, and 32 variants were followed up in 2,132 patients and 2,553 controls. A transpopulation meta-analysis with results from a large European RA study was also performed to compare the genetic architecture across the 2 ethnic remote populations. Results Three non-major histocompatibility complex (non-MHC) loci were identified at the genome-wide significance level, the effect sizes of which were larger in anti-citrullinated protein antibody (ACPA)-positive patients than in ACPA-negative patients. These included 2 novel variants, rs12617656, located in an intron of DPP4 (odds ratio [OR] 1.56, P = 1.6 × 10 -21), and rs12379034, located in the coding region of CDK5RAP2 (OR 1.49, P = 1.1 × 10-16), as well as a variant at the known CCR6 locus, rs1854853 (OR 0.71, P = 6.5 × 10-15). The analysis of ACPA-positive patients versus ACPA-negative patients revealed that rs12617656 at the DPP4 locus showed a strong interaction effect with ACPAs (P = 5.3 × 10-18), and such an interaction was also observed for rs7748270 at the MHC locus (P = 5.9 × 10-8). The transpopulation meta-analysis showed genome-wide overlap and enrichment in association signals across the 2 populations, as confirmed by prediction analysis. Conclusion This study has expanded the list of alleles that confer risk of RA, provided new insight into the pathogenesis of RA, and added empirical evidence to the emerging polygenic nature of complex trait variation driven by common genetic variants. Copyright © 2014 by the American College of Rheumatology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It has been 10 years since the seminal paper by Morrison and colleagues reporting the association of alleles of the vitamin D receptor and bone density [1], a paper which arguably kick-started the study of osteoporosis genetics. Since that report there have been literally thousands of osteoporosis genetic studies published, and large numbers of genes have been reported to be associated with the condition [2]. Although some of these reported associations are undoubtedly true, this snow-storm of papers and abstracts has clouded the field to such a great extent that it is very difficult to be certain of the veracity of most genetic associations reported hereto. The field needs to take stock and reconsider the best way forward, taking into account the biology of skeletal development and technological and statistical advances in human genetics, before more effort and money is wasted on continuing a process in which the primary achievement could be said to be a massive paper mountain. I propose in this review that the primary reasons for the paucity of success in osteoporosis genetics has been: •the absence of a major gene effect on bone mineral density (BMD), the most commonly studied bone phenotype; •failure to consider issues such as genetic heterogeneity, gene–environment interaction, and gene–gene interaction; •small sample sizes and over-optimistic data interpretation; and •incomplete assessment of the genetic variation in candidate genes studied.