973 resultados para GEL-ELECTROPHORESIS ASSAYS
Resumo:
An outbreak of infections affecting 311 patients who had undergone different invasive procedures occurred in 2004 and 2005 in the city of Belem, in the northern region of Brazil. Sixty-seven isolates were studied; 58 were from patients who had undergone laparoscopic surgeries, 1 was from a patient with a postinjection abscess, and 8 were from patients who had undergone mesotherapy. All isolates were rapidly growing nonpigmented mycobacteria and presented a pattern by PCR-restriction enzyme analysis of the hsp65 gene with BstEII of bands of 235 and 210 bp and with HaeIII of bands of 200, 70, 60, and 50 bp, which is common to Mycobacterium abscessus type 2, Mycobacterium bolletii, and Mycobacterium massiliense. hsp65 and. rpoB gene sequencing of a subset of 20 isolates was used to discriminate between these three species. hsp65 and rpoB sequences chosen at random from 11 of the 58 isolates from surgical patients and the postinjection abscess isolate presented the highest degrees of similarity with the corresponding sequences of M. massiliense. In the same way, the eight mesotherapy isolates were identified as M. bolletii. Molecular typing by pulsed-field gel electrophoresis (PFGE) grouped all 58 surgical isolates, while the mesotherapy isolates presented three different PFGE patterns and the postinjection abscess isolate showed a unique PFGE pattern. In conclusion, molecular techniques for identification and typing were essential for the discrimination of two concomitant outbreaks and one case, the postinjection abscess, not related to either outbreak all of which were originally attributed to a single strain of M. abscessus.
Resumo:
The surface of midgut cells in Hemiptera is ensheathed by a lipoprotein membrane (the perimicrovillar membrane), which delimits a closed compartment with the microvillar membrane, the so-called perimicrovillar space. In Dysdercus peruvianus midgut perimicrovillar space a soluble aminopeptidase maybe involved in the digestion of oligopeptides and proteins ingested in the diet. This D. peruvianus aminopeptidase was purified to homogeneity by ion-exchange chromatography on an Econo-Q column, hydrophobic interaction chromatography on phenyl-agarose column and preparative polyacrylamide gel electrophoresis. The results suggested that there is a single molecular species of aminopeptidase in D. peruvianus midgut. Molecular mass values for the aminopeptidase were estimated to be 106 kDa (gel filtration) and 55 kDa (SDS-PAGE), suggesting that the enzyme occurs as a dimer under native conditions. Kinetic data showed that D. peruvianus aminopeptidase hydrolyzes the synthetic substrates LpNA, RpNA, A beta NA and AsnMCA (K(m)s 0.65, 0.14, 0.68 and 0.74 mM, respectively). The aminopeptidase activity upon LpNA was inhibited by EDTA and 1,10-phenanthroline, indicating the importance of metal ions in enzyme catalysis. One partial sequence of BLAST-identified aminopeptidase was found by random sequencing of the D. peruvianus midgut cDNA library. Semi-quantitative RT-PCR analysis showed that the aminopeptidase genes were expressed throughout the midgut epithelium, in the epithelia of V1, V2 and V3. Malphigian tubules and fat body, but it was not expressed in the salivary glands. These results are important in furthering our understanding of the digestive process in this pest species. (c) 2010 Elsevier Inc. All rights reserved.
Resumo:
Schizophrenia is likely to be a consequence of serial alterations in a number of genes that, together with environmental factors, will lead to the establishment of the illness. The dorsolateral prefrontal cortex (Brodmann`s Area 46) is implicated in schizophrenia and executes high functions such as working memory, differentiation of conflicting thoughts, determination of right and wrong concepts, correct social behavior and personality expression. We performed a comparative proteome analysis using two-dimensional gel electrophoresis of pools from 9 schizophrenia and 7 healthy control patients` dorsolateral prefrontal cortex aiming to identify, by mass spectrometry, alterations in protein expression that could be related to the disease. In schizophrenia-derived samples, our analysis revealed 10 downregulated and 14 upregulated proteins. These included alterations previously implicated in schizophrenia, such as oligodendrocyte-related proteins (myelin basic protein and transferrin), as well as malate dehydrogenase, aconitase, ATP synthase subunits and cytoskeleton-related proteins. Also, six new putative disease markers were identified, including energy metabolism, cytoskeleton and cell signaling proteins. Our data not only reinforces the involvement of proteins previously implicated in schizophrenia, but also suggests new markers, providing further information to foster the comprehension of this important disease. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Citrus sudden death (CSD) is a disease of unknown etiology that greatly affects sweet oranges grafted on Rangpur lime rootstock, the most important rootstock in Brazilian citriculture. We performed a proteomic analysis to generate information related to this plant pathogen interaction. Protein profiles from healthy, CSD-affected and CSD-tolerant stem barks, were generated using two-dimensional gel electrophoresis. The protein spots were well distributed over a pI range of 3.26 to 9.97 and a molecular weight (MW) range from 7.1 to 120 kDa. The patterns of expressed proteins on 2-DE gels made it possible to distinguish healthy barks from CSD-affected barks. Protein spots with MW around 30 kDa and pI values ranging from 4.5 to 5.2 were down-regulated in the CSD-affected rootstock bark. This set of protein spots was identified as chitinases. Another set of proteins, ranging in pI from 6.1 to 9.6 with an MW of about 20 kDa, were also suppressed in CSD-affected rootstock bark; these were identified as miraculin-like proteins, potential trypsin inhibitors. Downregulation of chitinases and proteinase inhibitors in CSD-affected plants is relevant since chitinases are well-known pathogenesis-related protein, and their activity against plant pathogens is largely accepted.
Resumo:
Epichlorohydrin (ECH), an important chemical in the synthetic polymer industry, is a bifunctional alkylating agent with the potential to form DNA interstrand crosslinks. Occupational exposure to this suspect carcinogen leads to chromosomal aberrations, and ECH has been shown to undergo reaction with DNA in vivo and in vitro. We are using denaturing polyacrylamide gel electrophoresis to assess cross-linking of synthetic DNA oligomers by both ECH and the related compound, epibromohydrin (EBH). Both epihalohydrins produce a low-mobility band on denaturing gels consistent with an interstrand cross-link. Moreover, the efficiencies, sequence preferences, reaction kinetics, and pH dependence differ for the two compounds, suggesting different mechanisms of reaction. Understanding these alkylation reactions may help explain the role of the epihalohydrins in cancer development.
Resumo:
Introdução: P. aeruginosa é o principal agente causador de infecção hospitalar sendo a primeira causa de pneumonia nosocomial em hospitais brasileiros. Os carbapenêmicos são geralmente o tratamento empírico de escolha para infecções graves causadas por esta bactéria. Entretanto, seu uso tem sido limitado pelas elevadas taxas de resistência entre os isolados de P. aeruginosa principalmente os produtores de metalo-β-lactamases (Mβla). Objetivos: Caracterizar e avaliar a produção de metalo-β-lactamase em amostras de Pseudomonas aeruginosa resistentes a ceftazidima e/ou imipenem em dois hospitais universitários de Porto Alegre. Métodos: O método de disco difusão padronizado pelo NCCLS foi utilizado para avaliar o perfil de susceptibilidade aos antimicrobianos. Um teste de aproximação de discos utilizando ceftazidima com ácido 2-mercaptopropiônico foi utilizado para triagem de amostras produtoras de Mβla. A fita de Etest combinada imipenem com EDTA também foi utilizada como teste fenotípico. Os resultados destes dois testes foram comparados à PCR para pesquisa dos genes blaSPM-1, blaIMP-1 e blaVIM-2 .Os isolados produtores de Mβla foram submetidos a tipagem molecular pela técnica de macrorestrição de DNA seguida de pulsed-field gel electrophoresis (PFGE). O perfil de hidrólise para o imipenem foi avaliado nas amostras produtoras de Mβla através da variação de absorção medida a 298 nm. Resultados: Dos 92 isolados clínicos analisados, 33 foram positivos no teste de aproximação de discos. Destes, 18 foram produtores de SPM-1 e 5 de IMP-1. Todas as amostras produtoras de SPM-1 apresentaram razão de IP/IPI na fita combinada ≥ 8. Os 18 isolados de SPM-1 foram classificados como um único padrão de PFGE que foi o predominante. Seis isolados pertenciam a um segundo padrão de PFGE, sendo que cinco destes eram IMP-1. O perfil de hidrólise mostrou que os isolados produtores de SPM-1 degradam mais efetivamente o imipenem quando comparado aos produtores de IMP-1 e aos não produtores de Mβla. Conclusões: Há uma alta prevalência de Mβla entre isolados de P. aeruginosa resistentes a imipenem e/ou ceftazidima. O gene SPM-1 é o elemento genético mais prevalente entre as amostras de P. aeruginosa Mβla positivas e a disseminação clonal têm contribuído para os elevados níveis de resistência aos carbapenêmicos entre os isolados de P. aeruginosa nos hospitais deste estudo.
Resumo:
Since the first description of sulfated polysaccharides from seaweeds, the biological activities of these compounds have been evaluated under different aspects and experimental procedures. Among the broad biological activities presented by seaweed polysaccharides, anticoagulant action appears as a promising function. In this present study we have obtained sulfated polysaccharides from the green seaweed Codium isthmocladium by proteolytic digestion, followed by separation into five fractions (0.3, 0.5, 0.7, 0.9 and 1.2) by sequential acetone precipitation. The chemical analyses have demonstrated that all fractions are composed mainly by sulfated polysaccharides. The anticoagulant activity of these fractions was determined by activated partial thromboplastin time (aPTT) and prothrombin time test (PT) using citrate normal human plasma. None fraction has shown anticoagulant activity by PT test. Furthermore, all of them have shown anticoagulant activity by aPTT test. These results indicated that the molecular targets of these sulfated polysaccharides are mainly in the intrinsic via of the coagulation cascade. Agarose gel electrophoresis in 1,3-diaminopropane acetate buffer, pH 9.0, stained with 0.1% toluidine blue showed the presence of two or three bands in several fractions while the fraction 0.9 showed a single spot. By anion exchange chromatography, the acid polysaccharides from the 0.9 acetone fraction were separated into two new fractions eluted respectively with 2.0 and 3.0 M NaCl. These compounds showed a molecular weight of 6.4 and 7.4 kDa respectively. Chemical analyses and infrared spectroscopy showed that Gal 1 and Gal 2 are sulfated homogalactans and differ one from the other in degree and localization of sulfate groups. aPPT test demonstrated that fractions 2,0 and 3,0M (Gal1 and Gal 2, respectively) have anticoagulant activity. This is the first time that anticoagulant sulfated homogalatans have been isolated from green algae. To prolong the coagulation time to double the baseline value in the aPTT, the required amount of sulfated galactan 1 (6,3mg) was similar to low molecular heparin Clexane®, whereas only 0,7mg of sulfated galactan 2 was needed to obtain the same effect. Sulfated galactan 2 in high doses (250mg) induces platelet aggregation. These results suggest that these galactans from C. isthmocladum have a potential application as an anticoagulant drug
Resumo:
Four different sponge species were screened using Ouchterlony agarose gel and immunodiffusion tests to identify cross-reactivity with the polyclonal antibody IgG anti-deglicosilated CvL, a lectin from Cliona varians. Crude extract from the sponge Cinachyrella apion showed cross-reactivity and also a strong haemmaglutinating activity towards human erythrocytes of all ABO groups. Thus, it was submitted to acetone fractionation, IgG anti-deglicosilated CvL Sepharose affinity chromatography, and Fast Protein Liquid Chromatography (FPLC-AKTA) gel filtration on a Superose 6 10 300 column to purify a novel lectin. C. apion lectin (CaL) agglutinated all types of human erythrocytes with preference for papainized type A and O erythrocytes. The haemagglutinating activity is independent of Ca2+, Mg2+ and Mn2+ ions, and it was strongly inhibited by the disaccharide D-lactose, up to a minimum concentration of 6.25 mM. CaL molecular mass determined by FPLC-AKTA gel filtration on a Superose 12 10 300 column and SDS gel electrophoresis was approximately 124 kDa, consisting of eight subunits of 15.5 kDa, assembled by hydrophobic interactions. The lectin was relatively heat- and pH-stable. Leishmania chagasi romastigotes were agglutinated by CaL, indicating that lactose receptors could be presented in this parasite stage. These findings are indicative of the physiological defense roles of CaL and its possible use in the antibiosis of pathogenic protozoa
Resumo:
Sulfated polysaccharides (PS) are biomolecules with a great biotechnological potential. There are few data about PS from high plants. In addition, pharmacological activities of PS from plants have not been carrying out. The aim of this work was extract PS from the angiosperm Halodule wrightii and study their anticoagulant and antioxidant activities. Histological analysis showed the presence of the PS manly in the roots. A polysaccharide-rich extract was obtained from H. wrightii by proteolysis followed by methanol and TCA precipitation. Chemical, infra-red analysis and agarose gel electrophoresis in 1.3 diaminopropane acetate buffer confirmed the presence of sulfated polysaccharides made by glucose, galactose, xylose and sulfate residues in the proportion 1: 0,9: 1: 1. In addition polyacrilamide electrophoresis have shown that extract is mainly compose by 11kDa sulfated polysaccharides. Pharmacological analysis have shown total antioxidant capacity (CAT) that resulted in 15,21 μg for equivalent of ascorbic acid, scavenging activity of the DPPH radical with 41,36 % of scavenging, activity of reducing power with the maximum of 0,290 nm (50 % of vitamin C activity) and scavenging activity superoxide radical (O2-) with a maximum of 32,23 %. Chelating activity of metal less than 4% and scavenging activity of the radical hydroxyl (OH-) less than 2%. Time of activated partial tromboplastin (aPTT) doubling the time of coagulation from 20μg of and protrombin time (PT) was not present. The data indicate that PS from Halodule wrightii could be considered for future applications in medicine, food production or cosmetic industry
Resumo:
In recent years, sulfated polysaccharides (SP) from marine algae have emerged as an important class of natural biopolymers with potential pharmacology applications. Among these, SP isolated from the cell walls of red algae have been study due to their anticoagulant,antithrombotic and anti-inflammatory activities. In the present study, three sulfated polysaccharides fractions denominated F1.5v, F2.0v and F3.0v were obtained from seaweed G. caudate by proteolysis followed to acetone fractionation. Gel electrophoresis using 0.05 M 1,3-diaminopropane-acetate buffer, pH 9,0, stained with 0.1% toluidine blue, showed the presence of SP in all fractions. The chemical analysis demonstrated that all the fractions are composed mainly of galactose. These compounds were evaluated in anticoagulant, antioxidant and antiproliferative activities. In anticoagulant activity evaluated through aPTT and PT tests, no one fractions presented anticoagulant activity at tested concentrations (0.1 mg/mL; 1.0 mg/mL; 2.0 mg/mL).The antioxidant activities of the three fractions were evaluated by the following in vitro systems: Total antioxidant capacity, superoxide and hydroxyl radical scavenging, ferrous chelating activity and reducing power. The fractions were found to have different levels of antioxidant activity in the systems tested. F1.5v shows the highest activity, especially in the ferrous chelating system, with 70% of ferrous inhibiting at 1.0 mg.mL-1. Finally, all the fractions showed dose-dependent antiproliferative activity against HeLa cells. The fractions F1.5v and F2.0v presented the highest antiproliferative activity at 2.0 mg/mL with 42.7% and 37.0% of inhibition, respectively. Ours results suggests that the sulfated polysaccharides from seaweed G. caudata are promising compounds in antioxidant and/or antitumor therapy
Resumo:
Sulfated polysaccharides (PS) are biomolecules with a great biotechnological potential. There are few data about PS from high plants. In addition, pharmacological activities of PS from plants have not been carrying out. The aim of this work was extract PS from the angiosperm Halodule wrightii and study their anticoagulant and antioxidant activities. Histological analysis showed the presence of the PS manly in the roots. A polysaccharide-rich extract was obtained from H. wrightii by proteolysis followed by methanol and TCA precipitation. Chemical, infra-red analysis and agarose gel electrophoresis in 1.3 diaminopropane acetate buffer confirmed the presence of sulfated polysaccharides made by glucose, galactose, xylose and sulfate residues in the proportion 1: 0,9: 1: 1. In addition polyacrilamide electrophoresis have shown that extract is mainly compose by 11kDa sulfated polysaccharides. Pharmacological analysis have shown total antioxidant capacity (CAT) that resulted in 15,21 μg for equivalent of ascorbic acid, scavenging activity of the DPPH radical with 41,36 % of scavenging, activity of reducing power with the maximum of 0,290 nm (50 % of vitamin C activity) and scavenging activity superoxide radical (O2-) with a maximum of 32,23 %. Chelating activity of metal less than 4% and scavenging activity of the radical hydroxyl (OH-) less than 2%. Time of activated partial tromboplastin (aPTT) doubling the time of coagulation from 20μg of and protrombin time (PT) was not present. The data indicate that PS from Halodule wrightii could be considered for future applications in medicine, food production or cosmetic industry
Resumo:
The corn cob is an agricultural by-product still little used, this in part due to the low knowledge of the biotechnological potential of their molecules. Xylan from corn cobs (XSM) is a polysaccharide present in greater quantity in the structure of plant and its biotechnology potential is little known. This study aimed to the extraction, chemical characterization and evaluation of biological activities of xylan from corn cobs. To this end, corncobs were cleaned, cut, dried and crushed, resulting in flour. This was subjected to a methodology that combines the use of alkaline conditions with waves of ultrasound. After methanol precipitation, centrifugation and drying was obtained a yield of 40% (g/g flour). Chemical analysis indicated a high percentage of polysaccharides in the sample (60%) and low contamination by protein (0.4%) and phenolic compounds (> 0.01%). Analysis of monosaccharide composition indicated the presence of xylose:glucose:arabinose:galactose:mannose:glucuronic acid in a molar ratio 50:20:15:10:2.5:2.5. The presence of xylan in the sample was confirmed by nuclear magnetic resonance (¹H and ¹³C) and infrared spectroscopy (IR). Tests were conducted to evaluate the antioxidant potential of XSM. This showed a total antioxidant capacity of 48.45 EAA/g sample. However, did not show scavenging activity of superoxide and hydroxyl radical and also reducing power. But, showing a high capacity chelating iron ions with 70% with about 2 mg/mL. The ability to XSM to influence cell proliferation in culture was also evaluated. This polymer did not influence the proliferation of normal fibroblast cells (3T3), however, decreased the rate of proliferation of tumor cells (HeLa) in a dose-dependent, reaching an inhibition of about 50% with a concentration around 2 mg/mL. Analyzing proteins related to cell death, by immunoblotting, XSM increases the amount of Bax, Bcl-2 decrease, increase cytochrome c and AIF, and reduce pro-caspase-3, indicating the induction of cell death induced apoptosis dependent and independent of caspase. XSM did not show anticoagulant activity in the PT test. However, the test of activated partial thromboplastin time (aPTT), XSM increased clotting time at about 5 times with 600 μg of sample compared with the negative control. The presence of sulfate on the XSM was discarded by agarose gel electrophoresis and IR. After carboxyl-reduction of XSM the anticoagulant activity decreased dramatically. The data of this study demonstrate that XSM has potential as antioxidant, antiproliferative and anticoagulant compound. Future studies to characterize these activities of XSM will help to increase knowledge about this molecule extracted from corn and allow their use in functional foods, pharmaceuticals and chemical industries.
Resumo:
A 140,0 kDa lectin was purified and characterized from the mushroom Clavaria cristata. The purification procedures from the crude extract of the mushroom comprised gel filtration chromatography on Sephacryl s200 and ion exchange on Resource Q column. The purified lectin agglutinated all types of human erythrocytes with preference for trypsinized type O erythrocytes. The haemagglutinating activity is dependent of Ca 2+ ions and was strongly inhibited by the glycoprotein bovine submaxillary mucin (BSM) up to the concentration of 0, 125 mg/mL. The C. cristata lectin (CcL) was stable in the pH range of 2,5-11,5 and termostable up to 80 °C. CcL molecular mass determined by gel filtration on a Superose 6 10 300 column was approximately 140,3 kDa. SDS polyacrilamide gel electrophoresis revealed a single band with a molecular mass of approximately 14,5 kDa, when the lectin was heated at 100 ⁰C in the presence or absence of β-mercaptoethanol. CcL induced activation of murine peritoneal macrophages in vitro resulting in the release of nitric oxide (NO), reaching the maximum production at 24 h. In experimental paw oedema model in mice, CcL showed proinflammatory activity being able to induce oedema formation. Cell viability of HepG2, MDA 435 e 3T3 cell lines was examined after 72 h of incubation with CcL in different concentrations (0,5-50 μg/mL). CcL inhibited HepG2 cells growth with an IC50 value of 50 μg/mL. In the present work, the observed immunomodulatory and antiproliferative effects indicate CcL as a possible immunomodulator compound, interfering in the macrophages immune response, taking possible anti-parasitic, anti-tumoral effects or diagnostic and/or therapeutic
Resumo:
Rheumatoid arthritis (RA) is systemic auto imune disorder. It is caracterized by chronic inflammation of joints leading to progressive erosion of cartilage and bone. We investigated the effect of the administration of fucoidan, sulfated polysaccharides, from algae Fucus vesiculosus in the acute (6h) in zymosan-induced arthritis (AZy). Wistar rats (180-230 g) were used for all groups experimental. Non-treated animals received just intraarticular injection of 1 mg the zymosan, control group received intraarticular injection of 50 µL the saline, groups received either fucoidan of Fucus vesiculosus (15, 30, 50 or 70 mg/Kg) or parecoxib (1 mg/Kg) 1 hour after injection of zymosan. After 6 h, the articular exudates were collected for evaluation of the cell influx and nitrite (Griess reaction) release. The sinovial membranes and articular cartilages were excised for histopathological analysis and by determination of the glycosaminoglycan (GAG), respectively. ZyA led to increased NO and cell influx into the joints. Therapeutic administration of the fucoidan or parecoxib did significantly inhibited the cell influx and the synovitis, as compared to non-treated rats (p<0,05), though being able to reduced NO release. Representative agarose gel electrophoresis of the GAGs, the content of condroitin-sulphate was observed during the process. These findings suggest that the fucoidan from Fucus vesiculosus has potential anti-inflammatory activity
Resumo:
Aim: The aim of this work was to investigate the hypothesis that catechol and 3MC inhibit FADH2-linked basal respiration in mitochondria isolated from rat liver and brain homogenates. Moreover, catechol ability to induce DNA damage in rat brain cells through the comet assay (alkaline single-cell gel electrophoresis assay) was also observed. Methods: Two different catechols were evaluated: pirocatechol (derived from benzene) and 3-methylcatechol (derived from toluene); rat liver and brain homogenates were incubated with 1mM catechol at pH 7.4 for up to 30 minutes. After that, mitochondrial fractions were isolated by differential centrifugation. Basal oxygen uptake was measured using a Clark-type electrode after the addition of 10 mM sodium succinate for a period of 12 minutes. In additional experiments, rat brain cells were treated with 1, 5 and 10mM pirocatechol for up to 20 minutes at 37º C, and submitted to electrophoresis. Results: Catechols (pirocatechol and 3methylcatechol) induced a time-dependent partial inhibition of FADH2-linked basal mitochondrial respiration. Indeed, pirocatechol was able to produce a dosedependent DNA oxidative damage in rat brain cells by 2 and 4 injury levels. These results suggest that reactive oxygen species generated by the oxidation of catechols, induced an impairment on mitochondrial respiration and a DNA damage, which might be related to their citotoxicity. Conclusion: Catechols produced an inhibition of basal respiration associated to FADH2 in isolated liver and brain mitochondria; 3-methylcatechol, at the same concentration, produced similar toxicity in the mitochondrial model. Indeed, pirocatechol induced a DNA damage in rat brain cells, mainly observed in comets formation and consequent DNA degradation