988 resultados para GAUZE CATALYSTS
Resumo:
Titania-silica (Ti/SiO2) and silica-titania-silica (Si/Ti/SiO2) catalysts were:prepared by chemical grafting using TiCl4 and tetraethyl orthosilicate (TEOS) as precursors and SiO2 as support. The prepared catalysts were characterized by UV Raman and visible Raman spectroscopies, XRD and the epoxidation of styrene; Ti/SiO2: catalyst grafted with only titanium species is not very active for epoxidation using H2O2 (30%), but is active and-selective when one uses tert-butyl hydroperoxide (TBHP). The catalyst grafted at high temperatures shows better epoxide selectivity. Si/Ti/SiO2 catalyst, the titanium-silica grafted further with TEOS, is active and selective for the epoxidation of styrene using either dilute H2O2 or TBHP, possibly due to the fact that the grafting of Ti/SiO2 with TEOS modifies the coordination structure of titanium and makes the titanium sites of Si-O-Ti-O-Si species less hydrophilic. A characteristic band at 1085cm(-1) due to Ti-O-Si species is detected for the grafted catalysts by UV resonance Raman spectroscopy. Reaction between TiCl4 and SiO2 at high temperatures favors the formation of Ti-O-Si species. Better activity and selectivity to epoxide,is found for the catalysts with more Ti-O-Si species. It is assumed that the active sites are the highly isolated Ti-O-Si species. For Si/Ti/SiO2 catalyst, the gas phase O-2 can participate in the catalytic oxidation of styrene when H2O2 is present ana:ii causes the formation of benzaldehyde. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Effects of various kinds of additives as well as aging of the catalyst on the polymerization of styrene catalyzed by TiCl4/MgCl2-AlEt3 system have been studied. Experiments show that in toluene the isotacticity of polystyrene can be up to 83% for aged catalyst, whereas when the catalyst is not aged. non-stereospecific polymer is the main product. When PCl3 is used as an additive, the catalyst system gives high activity and isotacticity. The use of a mixture of AlEt3/H2O (1: 1 mole ratio) as a cocatalyst is also efficient. The catalyst [TiCl4-PCl3/MgCl2-AlEt3/H2O] displays high activity and product isotacticity (94%) with an average molecular weight up to 2 X 10(-6). When Co(acac)(3) is added to to [TiCl4/MgCl2-AlEt3] catalyst after it was aged, the isotacticity can be up to 97%. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Total oxidation of chlorinated aromatics on supported manganese oxide catalysts was investigated. The catalysts have been prepared by wet impregnation method and characterized by XRD and TPR. Among the catalysts with the supports of TiO(2), Al(2)O(3) and SiO(2), titania supported catalyst (MnO(x)/TiO(2)) gives the highest catalytic activity. MnO(x)/TiO(2) (Mn loading, 1.9 wt.%) shows the total oxidation of chlorobenzene at about 400 degreesC. The activity can be stable for over 82 h except for the first few hours. At lower Mn loadings for MnO(x)/TiO(2), only one reduction peak appears at about 400 degreesC due to the highly dispersed manganese oxide. With the increase of Mn loading, another reduction peak emerges at about 500 degreesC, which is close to the reduction peak of bulk Mn(2)O(3) at 520 degreesC. TPR of the used catalyst is totally different from that of the fresh one indicating that the chemical state of the active species is changed during the chlorobenzene oxidation. The characterization studies of MnO(x)/TiO(2) showed that the highly dispersed MnO(x) is the precursor of the active phase, which can be converted into the active phase, mainly oxychlorinated manganese (MnO(y)Cl(z)), under working conditions of chlorobenzene oxidation. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
In order to improve the sulfur resistance of noble metal catalysts in the aromatic hydrogenation of diesel fuel, the alloying effect of non-noble metals with Pd was studied. Toluene hydrogenation over Pd and Pd-M bimetallic catalysts (M = Cr, W,La, Mn, Mo, Ag) on a mixed HY-Al2O3 support was investigated in the presence of 3000 ppm sulfur as thiophene in the feedstock. The results showed that the addition of the second metals strongly affected the activity of toluene hydrogenation, which suggests that the sulfur resistibility of Pd-M bimetallic catalysts is much different from single Pd. La, Mn, Mo and Ag decreased the sulfur resistance of the palladium catalysts. For example, the toluene conversion at 553 K was observed to decrease sharply from 39.4 wt.% on Pd to 1.6 wt.% on Pd-Ag, which is by a factor of 25. One of the important findings in this article is that Cr and W increase hydrogenation activity of Pd catalysts. The reactions occurring on these catalysts include hydrogenation, isomerization and hydrocracking, The addition of the second metals has no noticeable effects on the hydrogenation and isomerization selectivity, but it slightly suppresses hydrocracking reactions. The four typical catalysts, Pd-Cr, Pd-W, Pd-Ag and Pd were characterized by infrared (IR) spectroscopy of pyridine and CO. LR spectra of CO revealed the strong interaction between Pd and the second metal as Cr, W and Ag (or their oxide), indicating that the improvement in sulfur resistance originates from electron-deficient Pd with the addition of second metals. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
A novel sol-gel process for preparing oxides and mixed oxides sols from precipitation and peptization process is reported in this article. Inorganic salts are used as raw materials in this study. It is found that the amount of acid has great influence on the stability and particle diameter distribution of the precursor sols. Ultrasonic treatment is used to prepare alumina sol at room temperature. The result of Al-27 NMR shows that there exist Al-13(7+) species in the sol. By controlling the sol particles with narrow particle diameter distribution, alumina, titania and silica-alumina (SA) materials with narrow mesoporous distribution are formed by regular packing of sol particles during gelation without using any templates. The results also show that the structure and particle diameter distribution of precursor sol determine the final materials' texture.