991 resultados para Frequency regulation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Colorectal cancer (CRC) is the third most common cancer in Finland. Of all CRC tumors, 15% display microsatellite-instability (MSI) caused by defective cellular mismatch repair. Cells displaying MSI accumulate a high number of mutations genome-wide, especially in short repeat areas, microsatellites. When targeting genes essential for cell growth or death, MSI can promote tumorigenesis. In non-coding areas, microsatellite mutations are generally considered as passenger events. Since the discovery of MSI and its linkage to cancer, more that 200 genes have been investigated for a role in MSI tumorigenesis. Although various criteria have been suggested for MSI target gene identification, the challenge has been to distinguish driver mutations from passenger mutations. This study aimed to clarify these key issues in the research field of MSI cancer. Prior to this, background mutation rate in MSI cancer has not been studied in a large-scale. We investigated the background mutation rate in MSI CRC by analyzing the spectrum of microsatellite mutations in non-coding areas. First, semenogelin I was studied for a possible role in MSI carcinogenesis. The intronic T9 repeat of semenogelin I was frequently mutated but no evidence for selection during tumorigenesis was obtained. Second, a sequencing approach was utilized to evaluate the general background mutation rate in MSI CRC. Both intronic and intergenic repeats harbored extremely high mutation rates of ≤ 87% and intergenic repeats were more unstable than the intronic repeats. As mutation rates of presumably neutral microsatellites can be high in MSI CRC in the absence of apparent selection pressure, high mutation frequency alone is not sufficient evidence for identification of driver MSI target genes. Next, an unbiased approach was designed to identify the mutatome of MSI CRC. By combining expression array data and a database search we identified novel genes possibly related to MSI CRC carcinogenesis. One of the genes was studied further. In the functional analysis this gene was observed to cause an abnormal cancer-prone cellular phenotype, possibly through altered responses to DNA damage. In our recent study, smooth muscle myosin heavy chain 11 (MYH11) was identified as a novel MSI CRC gene. Additionally, MYH11 has a well established role in acute myeloid leukemia (AML) through an oncogenic fusion protein CBFB-MYH11. We investigated further the role of MYH11 in AML by sequencing. Three novel missense variants of MYH11 were identified. None of the variants were present in the population-based control material. One of the identified variants, V71A, lies in the N-terminal SH3-like domain of MYH11 of unknown function. The other two variants, K1059E and R1792Q are located in the coil-coiled myosin rod essential for the regulation and filament formation of MYH11. The variant K1059E lies in the close proximity of the K1044N that has been functionally assessed in our earlier work of CRC and has been reported to cause total loss of MYH11 protein regulation. As the functional significance of the three novel variants examined in this work remains unknown, future studies should clarify the further role of MYH11 in AML leukaemogenesis and in other malignancies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Functional loss of tumor suppressor protein p53 is a common feature in diverse human cancers. The ability of this protein to sense cellular damage and halt the progression of the cell cycle or direct the cells to apoptosis is essential in preventing tumorigenesis. Tumors having wild-type p53 also respond better to current chemotherapies. The loss of p53 function may arise from TP53 mutations or dysregulation of factors controlling its levels and activity. Probably the most significant inhibitor of p53 function is Mdm2, a protein mediating its degradation and inactivation. Clearly, the maintenance of a strictly controlled p53-Mdm2 route is of great importance in preventing neoplastic transformation. Moreover, impairing Mdm2 function could be a nongenotoxic way to increase p53 levels and activity. Understanding the precise molecular mechanisms behind p53-Mdm2 relationship is thus essential from a therapeutic point of view. The aim of this thesis study was to discover factors affecting the negative regulation of p53 by Mdm2, causing activation of p53 in stressed cells. As a model of cellular damage, we used UVC radiation, inducing a complex cellular stress pathway. Exposure to UVC, as well as to several chemotherapeutic drugs, causes robust transcriptional stress in the cells and leads to activation of p53. By using this model of cellular stress, our goal was to understand how and by which proteins p53 is regulated. Furthermore, we wanted to address whether these pathways affecting p53 function could be altered in human cancers. In the study, two different p53 pathway proteins, nucleophosmin (NPM) and promyelocytic leukemia protein (PML), were found to participate in the p53 stress response following UV stress. Subcellular translocations of these proteins were discovered rapidly after exposure to UV. The alterations in the cellular localizations were connected to transient interactions with p53 and Mdm2, implicating their significance in the regulation of p53 stress response. NPM was shown to control Mdm2-p53 interface and mediate p53 stabilization by blocking the ability of Mdm2 to promote p53 degradation. Furthermore, NPM mediated p53 stabilization upon viral insult. We further detected a connection between cellular pathways of NPM and PML, as PML was found to associate with NPM in UV-radiated cells. The observed temporal UV-induced interactions strongly imply existence of a multiprotein complex participating in the p53 response. In addition, PML controlled the UV response of NPM, its localization and complex formation with chromatin associated factors. The relevance of the UV-promoted interactions was demonstrated in studies in a human leukemia cell line, being under abnormal transcriptional repression due to expression of oncogenic PML-RARa fusion protein. Reversing the leukemic phenotype with a therapeutically significant drug was associated with similar complex formation between p53 and its partners as following UV. In conclusion, this thesis study identifies novel p53 pathway interactions associated with the recovery from UV-promoted as well as oncogenic transcriptional repression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low pressure radio frequency plasma-assisted deposition of 1-isopropyl-4-methyl-1,4-cyclohexadiene thin films was investigated for different polymerization conditions. Transparent, environmentally stable and flexible, these organic films are promising candidates for organic photovoltaics (OPV) and flexible electronics applications, where they can be used as encapsulating coatings and insulating interlayers. The effect of deposition RF power on optical properties of the films was limited, with all films being optically transparent, with refractive indices in a range of 1.57–1.58 at 500 nm. The optical band gap (Eg) of ~3 eV fell into the insulating Eg region, decreasing for films fabricated at higher RF power. Independent of deposition conditions, the surfaces were smooth and defect-free, with uniformly distributed morphological features and average roughness between 0.30 nm (at 10 W) and 0.21 nm (at 75 W). Films fabricated at higher deposition power displayed enhanced resistance to delamination and wear, and improved hardness, from 0.40 GPa for 10 W to 0.58 GPa for 75 W at a load of 700 μN. From an application perspective, it is therefore possible to tune the mechanical and morphological properties of these films without compromising their optical transparency or insulating property.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radio frequency plasma enhanced chemical vapor deposition is currently used to fabricate a broad range of functional coatings. This work described fabrication and characterization of a novel bioactive coating, polyterpenol, for encapsulation of three-dimensional indwelling medical devices. The materials are synthesized from monoterpene alcohols under different input power conditions. The chemical composition and structure of the polyterpenol thin films were determined by Xray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy, contact angle measurements, and atomic force microscopy (AFM). The application of polyterpenol coating to the substrate reduced surface roughness from 1.5 to 0.4 of a nanometer, and increased the water contact angle from to 9 to 72 degrees. The extent of attachment and extracellular polysaccharide (EPS) production of two medically relevant pathogens, Staphylococcus aureus and Staphylococcus epidermis were analyzed using scanning electron microscopy (SEM) and confocal scanning laser microscopy (CSLM). Application of polyterpenol coating fabricated at 10 W significantly inhibited attachment and growth of both pathogens compared to unmodified substrates, whilst addition of 50 W films resulted in an increased attachment, proliferation and EPS production by both types of bacteria when compared to unmodified surface. Marked dissimilarity in bacterial response between two coatings was attributed to changes in surface chemistry, nano-architecture and surface energy of polymer thin films deposited under different input power conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent advancements in the area of organic polymer applications demand novel and advanced materials with desirable surface, optical and electrical properties to employ in emerging technologies. This study examines the fabrication and characterization of polymer thin films from non-synthetic Terpinen-4-ol monomer using radio frequency plasma polymerization. The optical properties, thickness and roughness of the thin films were studied in the wavelength range 200–1000 nm using ellipsometry. The polymer thin films of thickness from 100 nm to 1000 nm were fabricated and the films exhibited smooth and defect-free surfaces. At 500 nm wavelength, the refractive index and extinction coefficient were found to be 1.55 and 0.0007 respectively. The energy gap was estimated to be 2.67 eV, the value falling into the semiconducting Eg region. The obtained optical and surface properties of Terpinen-4-ol based films substantiate their candidacy as a promising low-cost material with potential applications in electronics, optics, and biomedical industries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This note presents the statistical analysis carried out on some of the available experimental results to predict the resonant frequency and maximum displacement amplitude of a machine foundation – soil system under vertical vibration as a function of the size and weight of the foundation and of the excitation level. A total of 442 experimental results of Fry, Novak, and Raman have been analysed using nonlinear regression analysis. The results obtained compared well with predictions obtained from the popular theoretical models, and the coefficient of correlation obtained from the analysis was satisfactory in most of the cases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The surface instability of a semi-infinite plasma immersed in a high frequency field is investigated. When the natural Langmuir frequency of the surface is nearly equal to the frequency of the high frequency field, the dispersion relation predicts build-up of oscillations with a growth rate comparable with the real part of the frequency. Threshold values above which the instability is possible are derived.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aspartate transcarbamylase (EC 2.1.3.2) was purified to homogeniety from germinated mung bean seedlings by treatment with carbamyl phosphate. The purified enzyme was a hexamer with a subunit molecular weight of 20,600. The enzyme exhibited multiple activity bands on Polyacrylamide gel electrophoresis, which could be altered by treatment with carbamyl phosphate or UMP indicating that the enzyme was probably undergoing reversible association or dissociation in the presence of these effectors. The carbamyl phosphate stabilized enzyme did not exhibit positive homotropic interactions with carbamyl phosphate and hysteresis. The enzyme which had not been exposed to carbamyl phosphate showed a decrease in specific activity with a change in the concentration of both carbamyl phosphate and protein. The carbamyl phosphate saturation and U M P inhibition patterns were complex with a maximum and a plateau region. The partially purified enzyme also exhibited hysteresis and the hysteretic response, a function of protein concentration, was abolished by preincubation with carbamyl phosphate and enhanced by preincubation with UMP. All these observations are compatible with a postulation that the enzyme activity may be regulated by slow reversible association-dissociation dependent on the interaction with allosteric ligands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strawberries (Fragaria sp.) are adapted to diverse environmental conditions from the tropics to about 70ºN, so different responses to environmental conditions can be found. Most genotypes of garden strawberry (F. x ananassa Duch.) and woodland strawberry (F. vesca L.) are short-day (SD) plants that are induced to flowering by photoperiods under a critical limit, but also various photoperiod x temperature interactions can be found. In addition, continuously flowering everbearing (EB) genotypes are found. In addition to flowering, axillary bud differentiation in strawberry is regulated by photoperiod. In SD conditions, axillary buds differentiate to rosette-like structures called "branch crowns", whereas in long-day conditions (LD) they form runners, branches with 2 long internodes followed by a daughter plant (leaf rosette). The number of crown branches determines the yield of the plant, since inflorescences are formed from the apical meristems of the crown. Although axillary bud differentiation is an important developmental process in strawberries, its environmental and hormonal regulation has not been characterized in detail. Moreover, the genetic mechanisms underlying axillary bud differentiation and regulation of flowering time in these species are almost completely unresolved. These topics have been studied in this thesis in order to enhance strawberry research, cultivation and breeding. The results showed that 8-12 SD cycles suppressed runner initiation from the axillary buds of the garden strawberry cv. Korona with the concomitant induction of crown branching, and 3 weeks of SD was sufficient for the induction of flowering in the main crown. Furthermore, a second SD treatment given a few weeks after the first SD period can be used to induce flowering in the primary branch crowns and to induce the formation of secondary branches. Thus, artificial SD treatments effectively stimulate crown branching, providing one means for the increase of cropping (yield) potential in strawberry. It was also shown by growth regulation applications, quantitave hormone analysis and gene expression analysis that gibberellin (GA) is one of the key signals involved in the photoperiod control of shoot differentiation. The results indicate that photoperiod controls GA activity specifically in axillary buds, thereby determining bud fate. It was further shown that chemical control of GA biosynthesis by prohexadione-calcium can be utilized to prevent excessive runner formation and induce crown branching in strawberry fields. Moreover, ProCa increased berry yield up to 50%, showing that it is an easier and more applicable alternative to artificial SD treatments for controlling strawberry crown development and yield. Finally, flowering gene pathways in Fragaria were explored by searching for homologs of 118 Arabidopsis thaliana flowering-time genes. In total, 66 gene homologs were identified, and they distributed to all known flowering pathways, suggesting the presence of these pathways also in strawberry. Expression analysis of selected genes revealed that the mRNA of putative floral identity gene APETALA1 accumulated in the shoot apex of the EB genotype after the induction of flowering, whereas it was absent in vegetative SD genotype, indicating the usefulness of this gene product as the marker of floral initiation. The present data enables the further exploration of strawberry flowering pathways with genetic transformation, gene mapping and transcriptomics methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface instability of a collisionless semi-infinite current carrying plasma is studied. The semi-infinite plasma bounded by a plane surface is under the influence of a high frequency (hf) field. There are two classes of surface modes. One is a normal extension of zero high frequency field and the other due entirely to the presence ofhf field. As expected, with the increase in thehf field, the growth rates of the surface instabilities decrease. There are regions defined by the electron drift velocityu where the unstable surface and bulk regions overlap. The interesting result is that unlike the bulk plasma, there is a stable region on theu-axis flanked by two unstable regions. The width of this stable region increases with the increase in the field strength.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Serine hydroxymethyltransferase, the first enzyme in the pathway for the interconversion of one carbon compounds was purified from mung bean seedlings by ammonium sulfate fractionation, DEAE-Sephadex, Blue Sepharose CL-6B affinity chromatography and gel filteration on Sephacryl S-200. The specific activity of the enzyme, 0.73 (u mol HCHO formed/min/mg protein) was 104 times larger than the highest value reported hitherto. Saturation of tetrahydrofolate was sigmoid, whereas with serine was hyperbolic, with nH values of 1.9 and 1.0 respectively. Reduced nicotinamide adenine dinucleotide, lysine and methionine decreased, whereas nicotinamide adenine dinucleotide, adenosine 5′-monophosphate and adenosine 5′-triphosphate increased the sigmoidicity. These results suggest that serine hydroxymethyltransferase from mung bean is a regulatory enzyme. H4folate; (±)-L-tetrahydrofolate