948 resultados para Formation of certification and selection committee
Resumo:
The importance of neutrophil extracellular traps (NETs) in innate immunity is well established but the molecular mechanisms responsible for their formation are still a matter of scientific dispute. Here, we aim to characterize a possible role of the receptor-interacting protein kinase 3 (RIPK3) and the mixed lineage kinase domain-like (MLKL) signaling pathway, which are known to cause necroptosis, in NET formation. Using genetic and pharmacological approaches, we investigated whether this programmed form of necrosis is a prerequisite for NET formation. NETs have been defined as extracellular DNA scaffolds associated with the neutrophil granule protein elastase that are capable of killing bacteria. Neither Ripk3-deficient mouse neutrophils nor human neutrophils in which MLKL had been pharmacologically inactivated, exhibited abnormalities in NET formation upon physiological activation or exposure to low concentrations of PMA. These data indicate that NET formation occurs independently of both RIPK3 and MLKL signaling.
Resumo:
Histone RNA 3' end formation occurs through a specific cleavage reaction that requires, among other things, base-pairing interactions between a conserved spacer element in the pre-mRNA and the minor U7 snRNA present as U7 snRNP. An oligonucleotide complementary to the first 16 nucleotides of U7 RNA can be used to characterize U7 snRNPs from nuclear extracts by native gel electrophoresis. Using similar native gel techniques, we present direct biochemical evidence for a stable association between histone pre-mRNA and U7 snRNPs. Other complexes formed in the nuclear extract are dependent on the 5' cap structure and on the conserved hairpin element of histone pre-mRNA, respectively. However, in contrast to the U7-specific complex, their formation is not required for processing. Comparison of several authentic and mutant histone pre-mRNAs with different spacer sequences demonstrates that the formation and stability of the U7-specific complex closely follows the predicted stability of the potential RNA-RNA hybrid. However, this does not exclude a stabilization of the complex by U7 snRNP structural proteins.
Resumo:
INTRODUCTION Clinical treatment of spinal metastasis is gaining in complexity while the underlying biology remains unknown. Insufficient biological understanding is due to a lack of suitable experimental animal models. Intercellular adhesion molecule-1 (ICAM1) has been implicated in metastasis formation. Its role in spinal metastasis remains unclear. It was the aim to generate a reliable spinal metastasis model in mice and to investigate metastasis formation under ICAM1 depletion. MATERIAL AND METHODS B16 melanoma cells were infected with a lentivirus containing firefly luciferase (B16-luc). Stable cell clones (B16-luc) were injected retrogradely into the distal aortic arch. Spinal metastasis formation was monitored using in vivo bioluminescence imaging/MRI. Neurological deficits were monitored daily. In vivo selected, metastasized tumor cells were isolated (mB16-luc) and reinjected intraarterially. mB16-luc cells were injected intraarterially in ICAM1 KO mice. Metastasis distribution was analyzed using organ-specific fluorescence analysis. RESULTS Intraarterial injection of B16-luc and metastatic mB16-luc reliably induced spinal metastasis formation with neurological deficits (B16-luc:26.5, mB16-luc:21 days, p<0.05). In vivo selection increased the metastatic aggressiveness and led to a bone specific homing phenotype. Thus, mB16-luc cells demonstrated higher number (B16-luc: 1.2±0.447, mB16-luc:3.2±1.643) and increased total metastasis volume (B16-luc:2.87±2.453 mm3, mB16-luc:11.19±3.898 mm3, p<0.05) in the spine. ICAM1 depletion leads to a significantly reduced number of spinal metastasis (mB16-luc:1.2±0.84) with improved neurological outcome (29 days). General metastatic burden was significantly reduced under ICAM1 depletion (control: 3.47×10(7)±1.66×10(7); ICAM-1-/-: 5.20×10(4)±4.44×10(4), p<0.05 vs. control) CONCLUSION Applying a reliable animal model for spinal metastasis, ICAM1 depletion reduces spinal metastasis formation due to an organ-unspecific reduction of metastasis development.
Resumo:
The bulk magnetic mineral record from Lake Ohrid, spanning the past 637 kyr, reflects large-scale shifts in hydrological conditions, and, superimposed, a strong signal of environmental conditions on glacial–interglacial and millennial timescales. A shift in the formation of early diagenetic ferrimagnetic iron sulfides to siderites is observed around 320 ka. This change is probably associated with variable availability of sulfide in the pore water. We propose that sulfate concentrations were significantly higher before ∼ 320 ka, due to either a higher sulfate flux or lower dilution of lake sulfate due to a smaller water volume. Diagenetic iron minerals appear more abundant during glacials, which are generally characterized by higher Fe / Ca ratios in the sediments. While in the lower part of the core the ferrimagnetic sulfide signal overprints the primary detrital magnetic signal, the upper part of the core is dominated by variable proportions of high- to low-coercivity iron oxides. Glacial sediments are characterized by high concentration of high-coercivity magnetic minerals (hematite, goethite), which relate to enhanced erosion of soils that had formed during preceding interglacials. Superimposed on the glacial–interglacial behavior are millennial-scale oscillations in the magnetic mineral composition that parallel variations in summer insolation. Like the processes on glacial–interglacial timescales, low summer insolation and a retreat in vegetation resulted in enhanced erosion of soil material. Our study highlights that rock-magnetic studies, in concert with geochemical and sedimentological investigations, provide a multi-level contribution to environmental reconstructions, since the magnetic properties can mirror both environmental conditions on land and intra-lake processes.
Resumo:
At the mid-latitudes of Utopia Planitia (UP), Mars, a suite of spatially-associated landforms exhibit geomorphological traits that, on Earth, would be consistent with periglacial processes and the possible freeze-thaw cycling of water. The suite comprises small-sized polygonally-patterned ground, polygon-junction and -margin pits, and scalloped, rimless depressions. Typically, the landforms incise a dark-toned terrain that is thought to be ice-rich. Here, we investigate the dark-toned terrain by using high resolution images from the HiRISE as well as near-infrared spectral-data from the OMEGA and CRISM. The terrain displays erosional characteristics consistent with a sedimentary nature and near-infrared spectra characterised by a blue slope similar to that of weathered basaltic-tephra. We also describe volcanic terrain that is dark-toned and periglacially-modified in the Kamchatka mountain-range of eastern Russia. The terrain is characterised by weathered tephra inter-bedded with snow, ice-wedge polygons and near-surface excess ice. The excess ice forms in the pore space of the tephra as the result of snow-melt infiltration and, subsequently, in-situ freezing. Based on this possible analogue, we construct a three-stage mechanism that explains the possible ice-enrichment of a broad expanse of dark-toned terrain at the mid-latitudes of UP: (1) the dark-toned terrain accumulates and forms via the regional deposition of sediments sourced from explosive volcanism; (2) the volcanic sediments are blanketed by atmospherically-precipitated (H2O) snow, ice or an admixture of the two, either concurrent with the volcanic-events or between discrete events; and, (3) under the influence of high obliquity or explosive volcanism, boundary conditions tolerant of thaw evolve and this, in turn, permits the migration, cycling and eventual formation of excess ice in the volcanic sediments. Over time, and through episodic iterations of this scenario, excess ice forms to decametres of depth. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Theoretical and empirical studies were conducted on the pattern of nucleotide and amino acid substitution in evolution, taking into account the effects of mutation at the nucleotide level and purifying selection at the amino acid level. A theoretical model for predicting the evolutionary change in electrophoretic mobility of a protein was also developed by using information on the pattern of amino acid substitution. The specific problems studied and the main results obtained are as follows: (1) Estimation of the pattern of nucleotide substitution in DNA nuclear genomes. The pattern of point mutations and nucleotide substitutions among the four different nucleotides are inferred from the evolutionary changes of pseudogenes and functional genes, respectively. Both patterns are non-random, the rate of change varying considerably with nucleotide pair, and that in both cases transitions occur somewhat more frequently than transversions. In protein evolution, substitution occurs more often between amino acids with similar physico-chemical properties than between dissimilar amino acids. (2) Estimation of the pattern of nucleotide substitution in RNA genomes. The majority of mutations in retroviruses accumulate at the reverse transcription stage. Selection at the amino acid level is very weak, and almost non-existent between synonymous codons. The pattern of mutation is very different from that in DNA genomes. Nevertheless, the pattern of purifying selection at the amino acid level is similar to that in DNA genomes, although selection intensity is much weaker. (3) Evaluation of the determinants of molecular evolutionary rates in protein-coding genes. Based on rates of nucleotide substitution for mammalian genes, the rate of amino acid substitution of a protein is determined by its amino acid composition. The content of glycine is shown to correlate strongly and negatively with the rate of substitution. Empirical formulae, called indices of mutability, are developed in order to predict the rate of molecular evolution of a protein from data on its amino acid sequence. (4) Studies on the evolutionary patterns of electrophoretic mobility of proteins. A theoretical model was constructed that predicts the electric charge of a protein at any given pH and its isoelectric point from data on its primary and quaternary structures. Using this model, the evolutionary change in electrophoretic mobilities of different proteins and the expected amount of electrophoretically hidden genetic variation were studied. In the absence of selection for the pI value, proteins will on the average evolve toward a mildly basic pI. (Abstract shortened with permission of author.) ^
Resumo:
Adult monkeys (Macaca mulatta) with lesions of the hippocampal formation, perirhinal cortex, areas TH/TF, as well as controls were tested on tasks of object, spatial and contextual recognition memory. ^ Using a visual paired-comparison (VPC) task, all experimental groups showed a lack of object recognition relative to controls, although this impairment emerged at 10 sec with perirhinal lesions, 30 sec with areas TH/TF lesions and 60 sec with hippocampal lesions. In contrast, only perirhinal lesions impaired performance on delayed nonmatching-to-sample (DNMS), another task of object recognition memory. All groups were tested on DNMS with distraction (dDNMS) to examine whether the use of active cognitive strategies during the delay period could enable good performance on DNMS in spite of impaired recognition memory (revealed by the VPC task). Distractors affected performance of animals with perirhinal lesions at the 10-sec delay (the only delay in which their DNMS performance was above chance). They did not affect performance of animals with areas TH/TF lesions. Hippocampectomized animals were impaired at the 600-sec delay (the only delay at which prevention of active strategies would likely affect their behavior). ^ While lesions of areas TH/TF impaired spatial location memory and object-in-place memory, hippocampal lesions impaired only object-in-place memory. The pattern of results for perirhinal cortex lesions on the different task conditions indicated that this cortical area is not critical for spatial memory. ^ Finally, all three lesions impaired contextual recognition memory processes. The pattern of impairment appeared to result from the formation of only a global representation of the object and background, and suggests that all three areas are recruited for associating information across sources. ^ These results support the view that (1) the perirhinal cortex maintains storage of information about object and the context in which it is learned for a brief period of time, (2) areas TH/TF maintain information about spatial location and form associations between objects and their spatial relationship (a process that likely requires additional time) and (3) the hippocampal formation mediates associations between objects, their spatial relationship and the general context in which these associations are formed (an integrative function that requires additional time). ^
Resumo:
Friedreich's ataxia is caused by the expansion of the GAA•TTC trinucleotide repeat sequence located in intron 1 of the frataxin gene. The long GAA•TTC repeats are known to form several non-B DNA structures including hairpins, triplexes, parallel DNA and sticky DNA. Therefore it is believed that alternative DNA structures play a role in the loss of mRNA transcript and functional frataxin protein in FRDA patients. We wanted to further elucidate the characteristics for formation and stability of sticky DNA by evaluating the structure in a plasmid based system in vitro and in vivo in Escherichia coli. The negative supercoil density of plasmids harboring different lengths of GAA•TTC repeats, as well as either one or two repeat tracts were studied in E. coli to determine if plasmids containing two long tracts (≥60 repeats) in a direct repeat orientation would have a different topological effect in vivo compared to plasmids that harbored only one GAA•TTC tract or two tracts of < 60 repeats. The experiments revealed that, in fact, sticky DNA forming plasmids had a lower average negative supercoil density (-σ) compared to all other control plasmids used that had the potential to form other non-B DNA structures such as triplexes or Z-DNA. Also, the requirements for in vitro dissociation and reconstitution of the DNA•DNA associated region of sticky DNA were evaluated. Results conclude that the two repeat tracts associate in the presence of negative supercoiling and MgCl 2 or MnCl2 in a time and concentration-dependent manner. Interaction of the repeat sequences was not observed in the absence of negative supercoiling and/or MgCl2 or in the presence of other monovalent or divalent cations, indicating that supercoiling and quite specific cations are needed for the association of sticky DNA. These are the first experiments studying a more specific role of supercoiling and cation influence on this DNA conformation. To support our model of the topological effects of sticky DNA in plasmids, changes in sticky DNA band migration was measured with reference to the linear DNA after treatment with increasing concentrations of ethidium bromide (EtBr). The presence of independent negative supercoil domains was confirmed by this method and found to be segregated by the DNA-DNA associated region. Sequence-specific polyamide molecules were used to test the effect of binding of the ligands to the GAA•TTC repeats on the inhibition of sticky DNA. The destabilization of the sticky DNA conformation in vitro through this binding of the polyamides demonstrated the first conceptual therapeutic approach for the treatment of FRDA at the DNA molecular level. ^ Thus, examining the properties of sticky DNA formed by these long repeat tracts is important in the elucidation of the possible role of sticky DNA in Friedreich's ataxia. ^
Resumo:
This study developed proxy measures to test the independent effects of medical specialty, institutional ethics committee (IEC) and the interaction between the two, upon a proxy for the dependent variable of the medical decision to withhold/withdraw care for the dying--the resuscitation index (R-index). Five clinical vignettes were constructed and validated to convey the realism and contextual factors implicit in the decision to withhold/withdraw care. A scale was developed to determine the range of contact by an IEC in terms of physician knowledge and use of IEC policy.^ This study was composed of a sample of 215 physicians in a teaching hospital in the Southwest where proxy measures were tested for two competing influences, medical specialty and IEC, which alternately oppose and support the decision to withhold/withdraw care for the dying. A sub-sample of surgeons supported the hypothesis that an IEC is influential in opposing the medical training imperative to prolong life.^ Those surgeons with a low IEC score were 326 percent more likely to continue care than were surgeons with a high IEC score when compared to all other specialties. IEC alone was also found to significantly predict the decision to withhold/withdraw care. Interaction of IEC with the specialty of surgery was found to be the best predictor for a decision to withhold/withdraw care for the dying. ^
Resumo:
Seven opal-CT-rich and five quartz-rich porcellanites and cherts from Site 504 have a range in oxygen-isotope values of 24.4 and 29.4 per mil. In opal-CT rocks, d18O becomes larger with sub-bottom depth and with age. Quartz-rich rocks do not show these trends. Boron, in general, increases with decreasing d18O for porcellanites and cherts considered together, supporting the conclusion that boron is incorporated within the quartz crystal structure during precipitation of the SiO2. Silicification of the chalks at Site 504 began 1 m.y. ago - that is, 5 m.y. after sedimentation commenced on the oceanic crust. Temperatures of chert formation determined from oxygen-isotope compositions reflect diagenetic temperatures rather than bottom-water temperatures, and are comparable to temperatures of formation determined by down-hole measurements. Opal-A in the chalks began conversion to opal-CT when a temperature of 50°C was reached in the sediment column. Conversion of opal-CT to quartz started at 55 °C. Silicification occurred over a stratigraphic thickness of about 10 meters when the temperature at the top of the 10 meters reached about 50°C. It took about 250,000 years to complete the silica transformation within each 10-meter interval of sediment at Site 504. Quartz formed over a stratigraphic range of at least 30 meters, at temperatures of about 54 to 60°C. The time and temperatures of silicification of Site 504 rocks are more like those at continental margins than those in deep-sea, open-ocean deposits.
Resumo:
We examine the link between organic matter degradation, anaerobic methane oxidation (AMO), and sulfate depletion and explore how these processes potentially influence dolomitization. We determined rates and depths of AMO and dolomite formation for a variety of organic-rich sites along the west African Margin using data from Ocean Drilling Program (ODP) Leg 175. Rates of AMO are calculated from the diffusive fluxes of CH4 and SO4, and rates of dolomite formation are calculated from the diffusive flux of Mg. We find that the rates of dolomite formation are relatively constant regardless of the depth at which it is forming, indicating that the diffusive fluxes of Mg and Ca are not limiting. Based upon the calculated log IAP values, log K(sp) values for dolomite were found to narrowly range between -16.1 and -16.4. Dolomite formation is controlled in part by competition between AMO and methanogenesis, which controls the speciation of dissolved CO2. AMO increases the concentration of CO3[2-] through sulfate reduction, favoring dolomite formation, while methanogenesis increases the pCO2 of the pore waters, inhibiting dolomite formation. By regulating the pCO2 and alkalinity, methanogenesis and AMO can regulate the formation of dolomite in organic-rich marine sediments. In addition to providing a mechanistic link between AMO and dolomite formation, our findings provide a method by which the stability constant of dolomite can be calculated in modern sediments and allow prediction of regions and depth domains in which dolomite may be forming.