976 resultados para Fluid Layer


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fireside deposits can be found in many types of utility and industrial furnaces. The deposits in furnaces are problematic because they can reduce heat transfer, block gas paths and cause corrosion. To tackle these problems, it is vital to estimate the influence of deposits on heat transfer, to minimize deposit formation and to optimize deposit removal. It is beneficial to have a good understanding of the mechanisms of fireside deposit formation. Numerical modeling is a powerful tool for investigating the heat transfer in furnaces, and it can provide valuable information for understanding the mechanisms of deposit formation. In addition, a sub-model of deposit formation is generally an essential part of a comprehensive furnace model. This work investigates two specific processes of fireside deposit formation in two industrial furnaces. The first process is the slagging wall found in furnaces with molten deposits running on the wall. A slagging wall model is developed to take into account the two-layer structure of the deposits. With the slagging wall model, the thickness and the surface temperature of the molten deposit layer can be calculated. The slagging wall model is used to predict the surface temperature and the heat transfer to a specific section of a super-heater tube panel with the boundary condition obtained from a Kraft recovery furnace model. The slagging wall model is also incorporated into the computational fluid dynamics (CFD)-based Kraft recovery furnace model and applied on the lower furnace walls. The implementation of the slagging wall model includes a grid simplification scheme. The wall surface temperature calculated with the slagging wall model is used as the heat transfer boundary condition. Simulation of a Kraft recovery furnace is performed, and it is compared with two other cases and measurements. In the two other cases, a uniform wall surface temperature and a wall surface temperature calculated with a char bed burning model are used as the heat transfer boundary conditions. In this particular furnace, the wall surface temperatures from the three cases are similar and are in the correct range of the measurements. Nevertheless, the wall surface temperature profiles with the slagging wall model and the char bed burning model are different because the deposits are represented differently in the two models. In addition, the slagging wall model is proven to be computationally efficient. The second process is deposit formation due to thermophoresis of fine particles to the heat transfer surface. This process is considered in the simulation of a heat recovery boiler of the flash smelting process. In order to determine if the small dust particles stay on the wall, a criterion based on the analysis of forces acting on the particle is applied. Time-dependent simulation of deposit formation in the heat recovery boiler is carried out and the influence of deposits on heat transfer is investigated. The locations prone to deposit formation are also identified in the heat recovery boiler. Modeling of the two processes in the two industrial furnaces enhances the overall understanding of the processes. The sub-models developed in this work can be applied in other similar deposit formation processes with carefully-defined boundary conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydraulic head is distributed through a medium with porous aspect. The analysis of hydraulic head from one point to another is used by the Richard's equation. This equation is equivalent to the groundwater ow equation that predicts the volumetric water contents. COMSOL 3.5 is used for computation applying Richard's equation. A rectangle of 100 meters of length and 10 meters of large (depth) with 0,1 m/s fl ux of inlet as source of our fl uid is simulated. The domain have Richards' equation model in two dimension (2D). Hydraulic head increases proportional with moisture content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work, liquid-solid flow in industrial scale is modeled using the commercial software of Computational Fluid Dynamics (CFD) ANSYS Fluent 14.5. In literature, there are few studies on liquid-solid flow in industrial scale, but any information about the particular case with modified geometry cannot be found. The aim of this thesis is to describe the strengths and weaknesses of the multiphase models, when a large-scale application is studied within liquid-solid flow, including the boundary-layer characteristics. The results indicate that the selection of the most appropriate multiphase model depends on the flow regime. Thus, careful estimations of the flow regime are recommended to be done before modeling. The computational tool is developed for this purpose during this thesis. The homogeneous multiphase model is valid only for homogeneous suspension, the discrete phase model (DPM) is recommended for homogeneous and heterogeneous suspension where pipe Froude number is greater than 1.0, while the mixture and Eulerian models are able to predict also flow regimes, where pipe Froude number is smaller than 1.0 and particles tend to settle. With increasing material density ratio and decreasing pipe Froude number, the Eulerian model gives the most accurate results, because it does not include simplifications in Navier-Stokes equations like the other models. In addition, the results indicate that the potential location of erosion in the pipe depends on material density ratio. Possible sedimentation of particles can cause erosion and increase pressure drop as well. In the pipe bend, especially secondary flows, perpendicular to the main flow, affect the location of erosion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of the thesis is to study cerium oxide thin films grown by the atomic layer deposition (ALD) for soot removal. Cerium oxide is one of the most important heterogeneous catalysts and can be used in particulate filters and sensors in a diesel exhaust pipe. Its redox/oxidation properties are a key factor in soot oxidation. Thus, the cerium oxide coating can help to keep particulate filters and sensors clean permanently. The literature part of the thesis focuses on the soot removal, introducing the origin and structure of soot, reviewing emissions standards for diesel particulate matter, and presenting methods and catalysts for soot removal. In the experimental part the optimal ALD conditions for cerium oxide were found, the structural properties of cerium oxide thin films were analyzed, and the catalytic activity of the cerium oxide for soot oxidation was investigated. Studying ALD growth conditions of cerium oxide films and determining their critical thickness range are important to maximize the catalytic performance operating at comparatively low temperature. It was found that the cerium oxide film deposited at 300 °C with 2000 ALD cycles had the highest catalytic activity. Although the activity was still moderate and did not decrease the soot oxidation temperature enough for a real-life application. The cerium oxide thin film deposited at 300 °C has a different crystal structure, surface morphology and elemental composition with a higher Ce3+ concentration compared to the films deposited at lower temperatures. The different properties of the cerium oxide thin film deposited at 300 °C increase the catalytic activity most likely due to higher surface area and addition of the oxygen vacancies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main objective of the present study was to analyze the best approach on how to coat paperboard trays at the pressing stage. The coating gives the paperboard enhanced barrier and mechanical properties. The whole process chain of the barrier coating development was studied in the research. The methodology applied includes obtaining the optimum temperature at which good adhesion and bonding is formed between paperboard and skin film. Evaluation of mechanical properties after the coatings; such as cracking, curling and barrier properties was performed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cirrhotic patients (23 with alcoholic cirrhosis, 5 with posthepatitic cirrhosis and 2 with cryptogenic cirrhosis) with ascites and portal hypertension were studied and divided into two groups corresponding to high or low risk to develop spontaneous bacterial peritonitis (SBP) related to the concentration of total protein in the ascitic fluid (A-TP): group I (high risk): A-TP£1.5 g/dl and group II (low risk): A-TP>1.5 g/dl. Fibronectin (FN), C3 and C4 concentrations were measured by radial immunodiffusion while total protein was measured by the biuret method. The mean values (group I vs group II) of C3 (12.59 ± 4.72 vs 24.53 ± 15.58 mg/dl), C4 (4.26 ± 3.87 vs 7.26 ± 4.14 mg/dl) and FN (50.47 ± 12.49 vs 75.89 ± 24.70 mg/dl) in the ascitic fluid were significantly lower (P<0.05) in the group considered to be at high risk for SBP. No significant difference was observed in the plasma/ascites fibronectin ratio (3.91 ± 1.21 vs 3.80 ± 1.26) or gradient (131.46 ± 64.01 vs 196.96 ± 57.38) between groups. Fibronectin in ascites was significantly correlated to C3 (r = 0.76), C4 (r = 0.58), total protein (r = 0.73) and plasma FN (r = 0.58) (P<0.05). The data suggest that the FN concentration in ascites is related to the opsonic capacity of this fluid, and that its concentration in the ascitic fluid may be a biochemical risk factor indicator for the development of spontaneous bacterial peritonitis

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We determined the effect of acute extracellular fluid volume changes on saline flow through 4 gut segments (ileocolonic, ileal, ileocolonic sphincter and proximal colon), perfused at constant pressure in anesthetized dogs. Two different experimental protocols were used: hypervolemia (iv saline infusion, 0.9% NaCl, 20 ml/min, volume up to 5% body weight) and controlled hemorrhage (up to a 50% drop in mean arterial pressure). Mean ileocolonic flow (N = 6) was gradually and significantly decreased during the expansion (17.1%, P<0.05) and expanded (44.9%, P<0.05) periods while mean ileal flow (N = 7) was significantly decreased only during the expanded period (38%, P<0.05). Mean colonic flow (N = 7) was decreased during expansion (12%, P<0.05) but returned to control levels during the expanded period. Mean ileocolonic sphincter flow (N = 6) was not significantly modified. Mean ileocolonic flow (N = 10) was also decreased after hemorrhage (retracted period) by 17% (P<0.05), but saline flow was not modified in the other separate circuits (N = 6, 5 and 4 for ileal, ileocolonic sphincter and colonic groups, respectively). The expansion effect was blocked by atropine (0.5 mg/kg, iv) both on the ileocolonic (N = 6) and ileal (N = 5) circuits. Acute extracellular fluid volume retraction and expansion increased the lower gastrointestinal resistances to saline flow. These effects, which could physiologically decrease the liquid volume being supplied to the colon, are possible mechanisms activated to acutely balance liquid volume deficit and excess.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The antimicrobial, hemagglutinating and toxic activities of the purple fluid of the sea hare Aplysia dactylomela are described. Intact or dialyzed purple fluid inhibited the growth of species of Gram-positive and Gram-negative bacteria and the action was not bactericidal but bacteriostatic. The active factor or factors were heat labile and sensitive to extreme pH values. The fluid preferentially agglutinated rabbit erythrocytes and, to a lesser extent, human blood cells, and this activity was inhibited by the glycoprotein fetuin, a fact suggesting the presence of a lectin. The fluid was also toxic to brine shrimp nauplii (LD50 141.25 µg protein/ml) and to mice injected intraperitoneally (LD50 201.8 ± 8.6 mg protein/kg), in a dose-dependent fashion. These toxic activities were abolished when the fluid was heated. Taken together, the data suggest that the activities of the purple fluid are due primarily to substance(s) of a protein nature which may be involved in the chemical defense mechanism of this sea hare.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of peritoneal fluid (PF) on the human sperm acrosome reaction (AR) was tested. Sperm was pre-incubated with PF and the AR was induced by calcium ionophore A23187 and a neoglycoprotein bearing N-acetylglycosamine residues (NGP). The AR induced by calcium ionophore was inhibited 40% by PF from controls (PFc) and 50% by PF from the endometriosis (PFe) group, but not by PF from infertile patients without endometriosis (PFi). No significant differences were found in the spontaneous AR. When the AR was induced by NGP, pre-incubation with PFc reduced (60%) the percentage of AR, while PFe and PFi caused no significant differences. The average rates of acrosome reactions obtained in control, NGP- and ionophore-treated sperm showed that NGP-induced exocytosis differed significantly between the PFc (11%) and PFe/PFi groups (17%), and the ionophore-induced AR was higher for PFi (33%) than PFc/PFe (25%). The incidence of the NGP-induced AR was reduced in the first hour of pre-incubation with PFc and remained nearly constant throughout 4 h of incubation. The present data indicate that PF possesses a protective factor which prevents premature AR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The application of computational fluid dynamics (CFD) and finite element analysis (FEA) has been growing rapidly in the various fields of science and technology. One of the areas of interest is in biomedical engineering. The altered hemodynamics inside the blood vessels plays a key role in the development of the arterial disease called atherosclerosis, which is the major cause of human death worldwide. Atherosclerosis is often treated with the stenting procedure to restore the normal blood flow. A stent is a tubular, flexible structure, usually made of metals, which is driven and expanded in the blocked arteries. Despite the success rate of the stenting procedure, it is often associated with the restenosis (re-narrowing of the artery) process. The presence of non-biological device in the artery causes inflammation or re-growth of atherosclerotic lesions in the treated vessels. Several factors including the design of stents, type of stent expansion, expansion pressure, morphology and composition of vessel wall influence the restenosis process. Therefore, the role of computational studies is crucial in the investigation and optimisation of the factors that influence post-stenting complications. This thesis focuses on the stent-vessel wall interactions followed by the blood flow in the post-stenting stage of stenosed human coronary artery. Hemodynamic and mechanical stresses were analysed in three separate stent-plaque-artery models. Plaque was modeled as a multi-layer (fibrous cap (FC), necrotic core (NC), and fibrosis (F)) and the arterial wall as a single layer domain. CFD/FEA simulations were performed using commercial software packages in several models mimicking the various stages and morphologies of atherosclerosis. The tissue prolapse (TP) of stented vessel wall, the distribution of von Mises stress (VMS) inside various layers of vessel wall, and the wall shear stress (WSS) along the luminal surface of the deformed vessel wall were measured and evaluated. The results revealed the role of the stenosis size, thickness of each layer of atherosclerotic wall, thickness of stent strut, pressure applied for stenosis expansion, and the flow condition in the distribution of stresses. The thicknesses of FC, and NC and the total thickness of plaque are critical in controlling the stresses inside the tissue. A small change in morphology of artery wall can significantly affect the distribution of stresses. In particular, FC is the most sensitive layer to TP and stresses, which could determine plaque’s vulnerability to rupture. The WSS is highly influenced by the deflection of artery, which in turn is dependent on the structural composition of arterial wall layers. Together with the stenosis size, their roles could play a decisive role in controlling the low values of WSS (<0.5 Pa) prone to restenosis. Moreover, the time dependent flow altered the percentage of luminal area with WSS values less than 0.5 Pa at different time instants. The non- Newtonian viscosity model of the blood properties significantly affects the prediction of WSS magnitude. The outcomes of this investigation will help to better understand the roles of the individual layers of atherosclerotic vessels and their risk to provoke restenosis at the post-stenting stage. As a consequence, the implementation of such an approach to assess the post-stented stresses will assist the engineers and clinicians in optimizing the stenting techniques to minimize the occurrence of restenosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main objective of this research is to estimate and characterize heterogeneous mass transfer coefficients in bench- and pilot-scale fluidized bed processes by the means of computational fluid dynamics (CFD). A further objective is to benchmark the heterogeneous mass transfer coefficients predicted by fine-grid Eulerian CFD simulations against empirical data presented in the scientific literature. First, a fine-grid two-dimensional Eulerian CFD model with a solid and gas phase has been designed. The model is applied for transient two-dimensional simulations of char combustion in small-scale bubbling and turbulent fluidized beds. The same approach is used to simulate a novel fluidized bed energy conversion process developed for the carbon capture, chemical looping combustion operated with a gaseous fuel. In order to analyze the results of the CFD simulations, two one-dimensional fluidized bed models have been formulated. The single-phase and bubble-emulsion models were applied to derive the average gas-bed and interphase mass transfer coefficients, respectively. In the analysis, the effects of various fluidized bed operation parameters, such as fluidization, velocity, particle and bubble diameter, reactor size, and chemical kinetics, on the heterogeneous mass transfer coefficients in the lower fluidized bed are evaluated extensively. The analysis shows that the fine-grid Eulerian CFD model can predict the heterogeneous mass transfer coefficients quantitatively with acceptable accuracy. Qualitatively, the CFD-based research of fluidized bed process revealed several new scientific results, such as parametrical relationships. The huge variance of seven orders of magnitude within the bed Sherwood numbers presented in the literature could be explained by the change of controlling mechanisms in the overall heterogeneous mass transfer process with the varied process conditions. The research opens new process-specific insights into the reactive fluidized bed processes, such as a strong mass transfer control over heterogeneous reaction rate, a dominance of interphase mass transfer in the fine-particle fluidized beds and a strong chemical kinetic dependence of the average gas-bed mass transfer. The obtained mass transfer coefficients can be applied in fluidized bed models used for various engineering design, reactor scale-up and process research tasks, and they consequently provide an enhanced prediction accuracy of the performance of fluidized bed processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Demand for the use of energy systems, entailing high efficiency as well as availability to harness renewable energy sources, is a key issue in order to tackling the threat of global warming and saving natural resources. Organic Rankine cycle (ORC) technology has been identified as one of the most promising technologies in recovering low-grade heat sources and in harnessing renewable energy sources that cannot be efficiently utilized by means of more conventional power systems. The ORC is based on the working principle of Rankine process, but an organic working fluid is adopted in the cycle instead of steam. This thesis presents numerical and experimental results of the study on the design of small-scale ORCs. Two main applications were selected for the thesis: waste heat re- covery from small-scale diesel engines concentrating on the utilization of the exhaust gas heat and waste heat recovery in large industrial-scale engine power plants considering the utilization of both the high and low temperature heat sources. The main objective of this work was to identify suitable working fluid candidates and to study the process and turbine design methods that can be applied when power plants based on the use of non-conventional working fluids are considered. The computational work included the use of thermodynamic analysis methods and turbine design methods that were based on the use of highly accurate fluid properties. In addition, the design and loss mechanisms in supersonic ORC turbines were studied by means of computational fluid dynamics. The results indicated that the design of ORC is highly influenced by the selection of the working fluid and cycle operational conditions. The results for the turbine designs in- dicated that the working fluid selection should not be based only on the thermodynamic analysis, but requires also considerations on the turbine design. The turbines tend to be fast rotating, entailing small blade heights at the turbine rotor inlet and highly supersonic flow in the turbine flow passages, especially when power systems with low power outputs are designed. The results indicated that the ORC is a potential solution in utilizing waste heat streams both at high and low temperatures and both in micro and larger scale appli- cations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neurocysticercosis (NCC) is a common neurological disorder especially in developing countries, caused by infection of the brain with encysted larvae of the tapeworm Taenia solium. Seizures are a common finding associated with this disease. The objective of the present study was to evaluate the correlation between the levels of various cytokines present in the cerebrospinal fluid (CSF) of patients with NCC and the severity of the disease. The levels of the cytokines IL-1ß, TNF-alpha, IL-5, IL-10 and IFN-gamma were determined in the CSF of 22 patients with active NCC, 13 patients with inactive NCC and 15 control subjects. CSF from patients with active NCC presented significantly higher IL-5 levels compared to control subjects. IL-5 and IL-10 levels in CSF from NCC patients with inflammatory CSF were significantly higher than those detected in non-inflammatory CSF. These results show a predominant Th2 lymphocyte activation in human NCC and also indicate the possible use of cytokines in the CSF as a marker for the differential diagnosis between inactive disease and the active form of NCC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of chronic nitric oxide synthase inhibition with N G-nitro-L-arginine methyl ester (L-NAME) on body fluid distribution was studied in male Wistar rats weighing 260-340 g. Extracellular, interstitial and intracellular spaces, as well as plasma volume were measured after a three-week treatment with L-NAME (~70 mg/kg per 24 h in drinking water). An increase in extracellular space (16.1 ± 1.1 vs 13.7 ± 0.6 ml/100 g in control group, N = 12, P<0.01), interstitial space (14.0 ± 0.9 vs 9.7 ± 0.6 ml/100 g in control group, P<0.001) and total water (68.7 ± 3.9 vs 59.0 ± 2.9 ml/100 g, P<0.001) was observed in the L-NAME group (N = 8). Plasma volume was lower in L-NAME-treated rats (2.8 ± 0.2 ml/100 g) than in the control group (3.6 ± 0.1 ml/100 g, P<0.001). Blood volume was also lower in L-NAME-treated rats (5.2 ± 0.3 ml/100 g) than in the control group (7.2 ± 0.3 ml/100 g, P<0.001). The increase in total ratio of kidney wet weight to body weight in the L-NAME group (903 ± 31 vs 773 ± 45 mg/100 g in control group, P<0.01) but not in total kidney water suggests that this experimental hypertension occurs with an increase in renal mass. The fact that the heart weight to body weight ratio and the total heart water remained constant indicates that, despite the presence of high blood pressure, no modification in cardiac mass occurred. These data show that L-NAME-induced hypertension causes alterations in body fluid distribution and in renal mass.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Creatinine plays a key role in the function and maturation of fetal kidneys throughout pregnancy. It is important to identify other markers that may help in the diagnosis of renal dysfunction. Our aim was to determine the profile of and the correlation between biochemical markers to be used to assess renal function and maturation of the fetus in the amniotic fluid during pregnancy and to determine the distribution of normal values for creatinine, N-acetyl-ß-D-glucosaminidase (NAG), ß2-microglobulin, glucose, urea, sodium, potassium, phosphorus, calcium, uric acid, albumin, and osmolality in three gestational age groups. This was a cross-section study that assessed 115 samples of amniotic fluid during three different periods of pregnancy, i.e., 13 to 20, 27 to 34, and 36 to 42 weeks. Concentrations of creatinine, NAG, urea, potassium and uric acid increased during pregnancy (P<0.05). ß2-Microglobulin, glucose, sodium, phosphorus, calcium, and albumin concentration and osmolality decreased (P<0.05), whereas ß2-microglobulin, glucose and uric acid presented significant correlations with gestational age and creatinine, respectively (r>0.6, P<0.05). Urea, potassium and phosphorus showed mild correlations with both (r>0.5, P<0.05). NAG, sodium, albumin and osmolality did not show significant correlations (r<0.5, P<0.05). These tests confirmed the important role of creatinine in terms of correlation with gestational age. ß2-Microglobulin, glucose and uric acid were significant as markers of function and maturation of fetal kidneys, whereas NAG did not demonstrate a useful role for the assessment of renal maturation.