991 resultados para Flue gases
Resumo:
A novel electrostatic precipitator CAROLA® is developed for collection of fine oil mists. It operates on the principle of unipolar particle charging in the corona discharge and particle precipitation under the field of space charge. The pilot precipitator was tested at different gas temperatures. It is shown that the increase of gas temperature changes the characteristics of the corona discharge and particle size distribution, especially for droplets sub-micron droplets. The CAROLA® precipitator was used for collection of oil mist from pyrolysis gases at the HALOCLEAN® plant. The flow rate of biomass in the HALOCLEAN® plant was 15-30 kg/h. The particle mass concentration in the raw gas was over 100 g/Nm. The operation voltage of the precipitator was 10-12 kV and corona current up to 0,1 mA. Single stage electrostatic precipitator ensured mass collection efficiency 97-99,5% for pyrolysis oil mist.
Resumo:
Liquids and gases produced through biomass pyrolysis have potential as renewable fuels to replace fossil fuels in conventional internal combustion engines. This review compares the properties of pyrolysis fuels, produced from a variety of feedstocks and using different pyrolysis techniques, against those of fossil fuels. High acidity, the presence of solid particles, high water content, high viscosity, storage and thermal instability, and low energy content are typical characteristics of pyrolysis liquids. A survey of combustion, performance and exhaust emission results from the use of pyrolysis liquids (both crude and up-graded) in compression ignition engines is presented. With only a few exceptions, most authors have reported difficulties associated with the adverse properties of pyrolysis liquids, including: corrosion and clogging of the injectors, long ignition delay and short combustion duration, difficulty in engine start-up, unstable operation, coking of the piston and cylinders and subsequent engine seizure. Pyrolysis gas can be used more readily, either in spark ignition or compression ignition engines; however, NO reduction techniques are desirable. Various approaches to improve the properties of pyrolysis liquids are discussed and a comparison of the properties of up-graded vs. crude pyrolysis liquid is included. Further developments in up-gradation techniques, such as hydrocracking and bio-refinery approaches, could lead to the production of green diesel and green gasoline. Modifications required to engines for use with pyrolysis liquids, for example in the fuel supply and injection systems, are discussed. Storage stability and economic issues are also reviewed. Our study presents recent progress and important R&D areas for successful future use of pyrolysis fuels in internal combustion engines.
Resumo:
This paper examines a method for locating within a scene a distribution of an absorbing gas using a passive imaging technique. An oscillatory modulation of the angle of a narrowband dielectric filter located in front of a camera imaging a scene, gives rise to an intensity modulation that differs in regions occupied by the absorbing gas. A preliminary low cost system has been constructed from readily available components which demonstrates how the location of gas within a scene can be implemented. Modelling of the system has been carried out, especially highlighting the transmission effects of the dielectric filter upon different regions of the image.
Resumo:
In the V.M. Glushov Institute of Cybernetics of National Academy of Sciences of Ukraine in collaboration with O.V. Palladin’s Institute of Biochemistry of National Academy of Sciences of Ukraine the smart portable device for express-diagnostics of acute viral infections, including bird flu, is designed. The device is based on the effect of surface plasmon resonance. The principles of device are described in the article.
Resumo:
The design, construction and optimization of a low power-high temperature heated ceramic sensor to detect leaking of halogen gases in refrigeration systems are presented. The manufacturing process was done with microelectronic assembly and the Low Temperature Cofire Ceramic (LTCC) technique. Four basic sensor materials were fabricated and tested: Li2SiO3, Na2SiO3, K2SiO3, and CaSiO 3. The evaluation of the sensor material, sensor size, operating temperature, bias voltage, electrodes size, firing temperature, gas flow, and sensor life was done. All sensors responded to the gas showing stability and reproducibility. Before exposing the sensor to the gas, the sensor was modeled like a resistor in series and the calculations obtained were in agreement with the experimental values. The sensor response to the gas was divided in surface diffusion and bulk diffusion; both were analyzed showing agreement between the calculations and the experimental values. The sensor with 51.5%CaSiO3 + 48.5%Li 2SiO3 shows the best results, including a stable current and response to the gas. ^
Resumo:
The design, construction and optimization of a low power-high temperature heated ceramic sensor to detect leaking of halogen gases in refrigeration systems are presented. The manufacturing process was done with microelectronic assembly and the Low Temperature Cofire Ceramic (LTCC) technique. Four basic sensor materials were fabricated and tested: Li2SiO3, Na2SiO3, K2SiO3, and CaSiO3. The evaluation of the sensor material, sensor size, operating temperature, bias voltage, electrodes size, firing temperature, gas flow, and sensor life was done. All sensors responded to the gas showing stability and reproducibility. Before exposing the sensor to the gas, the sensor was modeled like a resistor in series and the calculations obtained were in agreement with the experimental values. The sensor response to the gas was divided in surface diffusion and bulk diffusion; both were analyzed showing agreement between the calculations and the experimental values. The sensor with 51.5%CaSiO3 + 48.5%Li2SiO3 shows the best results, including a stable current and response to the gas.
Resumo:
This thesis is part of research on new materials for catalysis and gas sensors more active, sensitive, selective. The aim of this thesis was to develop and characterize cobalt ferrite in different morphologies, in order to study their influence on the electrical response and the catalytic activity, and to hierarchize these grains for greater diffusivity of gas in the material. The powders were produced via hydrothermal and solvothermal, and were characterized by thermogravimetric analysis, X-ray diffraction, scanning electron microscopy, transmission electron microscopy (electron diffraction, highresolution simulations), and energy dispersive spectroscopy. The catalytic and electrical properties were tested in the presence of CO and NO2 gases, the latter in different concentrations (1-100 ppm) and at different temperatures (room temperature to 350 ° C). Nanooctahedra with an average size of 20 nm were obtained by hydrothermal route. It has been determined that the shape of the grains is mainly linked to the nature of the precipitating agent and the presence of OH ions in the reaction medium. By solvothermal method CoFe2O4 spherical powders were prepared with grain size of 8 and 20 nm. CoFe2O4 powders exhibit a strong response to small amounts of NO2 (10 ppm to 200 ° C). The nanooctahedra have greater sensitivity than the spherical grains of the same size, and have smaller response time and shorter recovery times. These results were confirmed by modeling the kinetics of response and recovery of the sensor. Initial tests of catalytic activity in the oxidation of CO between temperatures of 100 °C and 350 °C show that the size effect is predominant in relation the effect of the form with respect to the conversion of the reaction. The morphology of the grains influence the rate of reaction. A higher reaction rate is obtained in the presence of nanooctahedra. In order to improve the detection and catalytic properties of the material, we have developed a methodology for hierarchizing grains which involves the use of carbonbased templates.
Resumo:
The Kara Sea is an area uniquely suitable for studying processes in the river-sea system. This is a shallow sea, into which two great Siberian rivers, Yenisei and Ob, flow. From 1995 to 2003, the sea was studied by six international expeditions onboard the R/V Akademik Boris Petrov. This publication summarizes the results obtained, within the framework of this project, at the Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences. Various hydrogeochemical parameters, concentrations and isotopic composition of organic and carbonate carbon of the sediments, plankton, particulate organic matter, hydrocarbons, and dissolved CO2 were examined throughout the whole sea area at more than 200 sites. The d13C varies from -22 and -24 per mil where Atlantic waters enter the Kara Sea and in the north-eastern part of the water area to -27 per mil in the Yenisei and Ob estuaries. The value of d13C of the plankton is only weakly correlated with the d13C of the organic matter from the sediments and is lower by as much as 3-4 per mil. The paper presents the results obtained from a number of meridional river-sea profiles. It was determined from the relations between the isotopic compositions of plankton and particulate matter that the river waters carry material consisting of 70% detrital-humus matter and 30% planktonogenic material in the river part, and the material contained in the offshore waters consists of 30% terrigenous components, with the contribution of bioproducers amounting to 70%. The carbon isotopic composition of the plankton ranges from -29 to -35 per mil in the riverine part, from -28 to -27 per mil in the estuaries, and from -27.0 to -25 per mil in the marine part. The relative lightness of the carbon isotopic composition of plankton in Arctic waters is explained by the temperature effect, elevated CO2 concentrations, and long-distance CO2 supply to the sea with river waters. The data obtained on the isotopic composition of CO2 in the surface waters of the Kara Sea were used to map the distribution of d13C. The complex of hydrocarbon gases extracted from the waters included methane, C2-C5, and unsaturated C2=-C4= hydrocarbons, for which variations in the concentrations in the waters were studied along river-estuary-sea profiles. The geochemistry of hydrocarbon gases in surface fresh waters is characterized by comparable concentrations of methane (0.3-5 µl/l) and heavier hydrocarbons, including unsaturated ones. Microbiological methane with d13C from -105 to -90 per mil first occurs in the sediments at depths of 40-200 cm. The sediments practically everywhere display traces of methane oxidation in the form of a shift of the d13C of methane toward higher values and the occurrence of autogenic carbonate material, including ikaite, enriched in the light isotope. Ikaite (d13C from -25 to -60 per mil) was found and examined in several profiles. The redox conditions in the sediments varied from normal in the southern part of the sea to highly oxidized along the Novaya Zemlya Trough. Vertical sections through the sediments of the latter exemplify the complete suppression of the biochemical activity of microorganisms. Our data provide insight into the biogeochemistry of the Kara Sea and make it possible to specify the background values needed for ecological control during the future exploration operations and extraction of hydrocarbons in the Kara Sea.
Resumo:
Peer reviewed
Resumo:
Peer reviewed
Resumo:
This work contributes to the ELUM (Ecosystem Land Use Modelling & Soil Carbon GHG Flux Trial) project, which was commissioned and funded by the Energy Technologies Institute (ETI). We acknowledge the E-OBS data set from the EU-FP6 project ENSEMBLES (http://ensembles-eu.metoffice.com) and the data providers in the ECA&D project (http://www.ecad.eu).
Resumo:
While a great amount of attention is being given to the development of nanodevices, both through academic research and private industry, the field is still on the verge. Progress hinges upon the development of tools and components that can precisely control the interaction between light and matter, and that can be efficiently integrated into nano-devices. Nanofibers are one of the most promising candidates for such purposes. However, in order to fully exploit their potential, a more intimate knowledge of how nanofibers interact with single neutral atoms must be gained. As we learn more about the properties of nanofiber modes, and the way they interface with atoms, and as the technology develops that allows them to be prepared with more precisely known properties, they become more and more adaptable and effective. The work presented in this thesis touches on many topics, which is testament to the broad range of applications and high degree of promise that nanofibers hold. For immediate use, we need to fully grasp how they can be best implemented as sensors, filters, detectors, and switches in existing nano-technologies. Areas of interest also include how they might be best exploited for probing atom-surface interactions, single-atom detection and single photon generation. Nanofiber research is also motivated by their potential integration into fundamental cold atom quantum experiments, and the role they can play there. Combining nanofibers with existing optical and quantum technologies is a powerful strategy for advancing areas like quantum computation, quantum information processing, and quantum communication. In this thesis I present a variety of theoretical work, which explores a range of the applications listed above. The first work presented concerns the use of the evanescent fields around a nanofiber to manipulate an existing trapping geometry and therefore influence the centre-of-mass dynamics of the atom. The second work presented explores interesting trapping geometries that can be achieved in the vicinity of a fiber in which just four modes are allowed to propagate. In a third study I explore the use of a nanofiber as a detector of small numbers of photons by calculating the rate of emission into the fiber modes when the fiber is moved along next to a regularly separated array of atoms. Also included are some results from a work in progress, where I consider the scattered field that appears along the nanofiber axis when a small number of atoms trapped along that axis are illuminated orthogonally; some interesting preliminary results are outlined. Finally, in contrast with the rest of the thesis, I consider some interesting physics that can be done in one of the trapping geometries that can be created around the fiber, here I explore the ground states of a phase separated two-component superfluid Bose-Einstein condensate trapped in a toroidal potential.