995 resultados para Flow quantification


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flow cytometric analysis is a useful and widely employed tool to identify immunological alterations caused by different microorganisms, including Mycobacterium tuberculosis. However, this tool can be used for several others analysis. We will discuss some applications for flow cytometry to the study of M. tuberculosis, mainly on cell surface antigens, mycobacterial secreted proteins, their interaction with the immune system using inflammatory cells recovered from peripheral blood, alveolar and pleura spaces and the influence of M. tuberculosis on apoptosis, and finally the rapid determination of drug susceptibility. All of these examples highlight the usefulness of flow cytometry in the study of M. tuber-culosis infection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Systematic asymptotic methods are used to formulate a model for the extensional flow of a thin sheet of nematic liquid crystal. With no external body forces applied, the model is found to be equivalent to the so-called Trouton model for Newtonian sheets (and fi bers), albeit with a modi fied "Trouton ratio". However, with a symmetry-breaking electric field gradient applied, behavior deviates from the Newtonian case, and the sheet can undergo fi nite-time breakup if a suitable destabilizing field is applied. Some simple exact solutions are presented to illustrate the results in certain idealized limits, as well as sample numerical results to the full model equations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An enzyme-linked immunosorbent assay was standardized for the detection of cryptococcal antigen in serum and cerebrospinal fluid. The system was evaluated in clinical samples from patients infected by human immunodeficiency virus with and without previous cryptococcosis diagnosis. The evaluated system is highly sensitive and specific, and when it was compared with latex agglutination there were not significant differences. A standard curve with purified Cryptococcus neoformans antigen was settled down for the antigen quantification in positive samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a novel hybrid (or multiphysics) algorithm, which couples pore-scale and Darcy descriptions of two-phase flow in porous media. The flow at the pore-scale is described by the Navier?Stokes equations, and the Volume of Fluid (VOF) method is used to model the evolution of the fluid?fluid interface. An extension of the Multiscale Finite Volume (MsFV) method is employed to construct the Darcy-scale problem. First, a set of local interpolators for pressure and velocity is constructed by solving the Navier?Stokes equations; then, a coarse mass-conservation problem is constructed by averaging the pore-scale velocity over the cells of a coarse grid, which act as control volumes; finally, a conservative pore-scale velocity field is reconstructed and used to advect the fluid?fluid interface. The method relies on the localization assumptions used to compute the interpolators (which are quite straightforward extensions of the standard MsFV) and on the postulate that the coarse-scale fluxes are proportional to the coarse-pressure differences. By numerical simulations of two-phase problems, we demonstrate that these assumptions provide hybrid solutions that are in good agreement with reference pore-scale solutions and are able to model the transition from stable to unstable flow regimes. Our hybrid method can naturally take advantage of several adaptive strategies and allows considering pore-scale fluxes only in some regions, while Darcy fluxes are used in the rest of the domain. Moreover, since the method relies on the assumption that the relationship between coarse-scale fluxes and pressure differences is local, it can be used as a numerical tool to investigate the limits of validity of Darcy's law and to understand the link between pore-scale quantities and their corresponding Darcy-scale variables.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monocytes are central mediators in the development of atherosclerotic plaques. They circulate in blood and eventually migrate into tissue including the vessel wall where they give rise to macrophages and dendritic cells. The existence of monocyte subsets with distinct roles in homeostasis and inflammation suggests specialization of function. These subsets are identified based on expression of the CD14 and CD16 markers. Routinely applicable protocols remain elusive, however. Here, we present an optimized four-color flow cytometry protocol for analysis of human blood monocyte subsets using a specific PE-Cy5-conjugated monoclonal antibody (mAb) to HLA-DR, a PE-Cy7-conjugated mAb to CD14, a FITC-conjugated mAb to CD16, and PE-conjugated mAbs to additional markers relevant to monocyte function. Classical CD14(+)CD16(-) monocytes (here termed "Mo1" subset) expressed high CCR2, CD36, CD64, and CD62L, but low CX(3)CR1, whereas "nonclassical" CD14(lo)CD16(+) monocytes (Mo3) essentially showed the inverse expression pattern. CD14(+)CD16(+) monocytes (Mo2) expressed high HLA-DR, CD36, and CD64. In patients with stable coronary artery disease (n = 13), classical monocytes were decreased, whereas "nonclassical" monocytes were increased 90% compared with healthy subjects with angiographically normal coronary arteries (n = 14). Classical monocytes from CAD patients expressed higher CX(3)CR1 and CCR2 than controls. Thus, stable CAD is associated with expansion of the nonclassical monocyte subset and increased expression of inflammatory markers on monocytes. Flow cytometric analysis of monocyte subsets and marker expression may provide valuable information on vascular inflammation. This may translate into the identification of monocyte subsets as selective therapeutic targets, thus avoiding adverse events associated with indiscriminate monocyte inhibition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Des progrès significatifs ont été réalisés dans le domaine de l'intégration quantitative des données géophysique et hydrologique l'échelle locale. Cependant, l'extension à de plus grandes échelles des approches correspondantes constitue encore un défi majeur. Il est néanmoins extrêmement important de relever ce défi pour développer des modèles fiables de flux des eaux souterraines et de transport de contaminant. Pour résoudre ce problème, j'ai développé une technique d'intégration des données hydrogéophysiques basée sur une procédure bayésienne de simulation séquentielle en deux étapes. Cette procédure vise des problèmes à plus grande échelle. L'objectif est de simuler la distribution d'un paramètre hydraulique cible à partir, d'une part, de mesures d'un paramètre géophysique pertinent qui couvrent l'espace de manière exhaustive, mais avec une faible résolution (spatiale) et, d'autre part, de mesures locales de très haute résolution des mêmes paramètres géophysique et hydraulique. Pour cela, mon algorithme lie dans un premier temps les données géophysiques de faible et de haute résolution à travers une procédure de réduction déchelle. Les données géophysiques régionales réduites sont ensuite reliées au champ du paramètre hydraulique à haute résolution. J'illustre d'abord l'application de cette nouvelle approche dintégration des données à une base de données synthétiques réaliste. Celle-ci est constituée de mesures de conductivité hydraulique et électrique de haute résolution réalisées dans les mêmes forages ainsi que destimations des conductivités électriques obtenues à partir de mesures de tomographic de résistivité électrique (ERT) sur l'ensemble de l'espace. Ces dernières mesures ont une faible résolution spatiale. La viabilité globale de cette méthode est testée en effectuant les simulations de flux et de transport au travers du modèle original du champ de conductivité hydraulique ainsi que du modèle simulé. Les simulations sont alors comparées. Les résultats obtenus indiquent que la procédure dintégration des données proposée permet d'obtenir des estimations de la conductivité en adéquation avec la structure à grande échelle ainsi que des predictions fiables des caractéristiques de transports sur des distances de moyenne à grande échelle. Les résultats correspondant au scénario de terrain indiquent que l'approche d'intégration des données nouvellement mise au point est capable d'appréhender correctement les hétérogénéitées à petite échelle aussi bien que les tendances à gande échelle du champ hydraulique prévalent. Les résultats montrent également une flexibilté remarquable et une robustesse de cette nouvelle approche dintégration des données. De ce fait, elle est susceptible d'être appliquée à un large éventail de données géophysiques et hydrologiques, à toutes les gammes déchelles. Dans la deuxième partie de ma thèse, j'évalue en détail la viabilité du réechantillonnage geostatique séquentiel comme mécanisme de proposition pour les méthodes Markov Chain Monte Carlo (MCMC) appliquées à des probmes inverses géophysiques et hydrologiques de grande dimension . L'objectif est de permettre une quantification plus précise et plus réaliste des incertitudes associées aux modèles obtenus. En considérant une série dexemples de tomographic radar puits à puits, j'étudie deux classes de stratégies de rééchantillonnage spatial en considérant leur habilité à générer efficacement et précisément des réalisations de la distribution postérieure bayésienne. Les résultats obtenus montrent que, malgré sa popularité, le réechantillonnage séquentiel est plutôt inefficace à générer des échantillons postérieurs indépendants pour des études de cas synthétiques réalistes, notamment pour le cas assez communs et importants où il existe de fortes corrélations spatiales entre le modèle et les paramètres. Pour résoudre ce problème, j'ai développé un nouvelle approche de perturbation basée sur une déformation progressive. Cette approche est flexible en ce qui concerne le nombre de paramètres du modèle et lintensité de la perturbation. Par rapport au rééchantillonage séquentiel, cette nouvelle approche s'avère être très efficace pour diminuer le nombre requis d'itérations pour générer des échantillons indépendants à partir de la distribution postérieure bayésienne. - Significant progress has been made with regard to the quantitative integration of geophysical and hydrological data at the local scale. However, extending corresponding approaches beyond the local scale still represents a major challenge, yet is critically important for the development of reliable groundwater flow and contaminant transport models. To address this issue, I have developed a hydrogeophysical data integration technique based on a two-step Bayesian sequential simulation procedure that is specifically targeted towards larger-scale problems. The objective is to simulate the distribution of a target hydraulic parameter based on spatially exhaustive, but poorly resolved, measurements of a pertinent geophysical parameter and locally highly resolved, but spatially sparse, measurements of the considered geophysical and hydraulic parameters. To this end, my algorithm links the low- and high-resolution geophysical data via a downscaling procedure before relating the downscaled regional-scale geophysical data to the high-resolution hydraulic parameter field. I first illustrate the application of this novel data integration approach to a realistic synthetic database consisting of collocated high-resolution borehole measurements of the hydraulic and electrical conductivities and spatially exhaustive, low-resolution electrical conductivity estimates obtained from electrical resistivity tomography (ERT). The overall viability of this method is tested and verified by performing and comparing flow and transport simulations through the original and simulated hydraulic conductivity fields. The corresponding results indicate that the proposed data integration procedure does indeed allow for obtaining faithful estimates of the larger-scale hydraulic conductivity structure and reliable predictions of the transport characteristics over medium- to regional-scale distances. The approach is then applied to a corresponding field scenario consisting of collocated high- resolution measurements of the electrical conductivity, as measured using a cone penetrometer testing (CPT) system, and the hydraulic conductivity, as estimated from electromagnetic flowmeter and slug test measurements, in combination with spatially exhaustive low-resolution electrical conductivity estimates obtained from surface-based electrical resistivity tomography (ERT). The corresponding results indicate that the newly developed data integration approach is indeed capable of adequately capturing both the small-scale heterogeneity as well as the larger-scale trend of the prevailing hydraulic conductivity field. The results also indicate that this novel data integration approach is remarkably flexible and robust and hence can be expected to be applicable to a wide range of geophysical and hydrological data at all scale ranges. In the second part of my thesis, I evaluate in detail the viability of sequential geostatistical resampling as a proposal mechanism for Markov Chain Monte Carlo (MCMC) methods applied to high-dimensional geophysical and hydrological inverse problems in order to allow for a more accurate and realistic quantification of the uncertainty associated with the thus inferred models. Focusing on a series of pertinent crosshole georadar tomographic examples, I investigated two classes of geostatistical resampling strategies with regard to their ability to efficiently and accurately generate independent realizations from the Bayesian posterior distribution. The corresponding results indicate that, despite its popularity, sequential resampling is rather inefficient at drawing independent posterior samples for realistic synthetic case studies, notably for the practically common and important scenario of pronounced spatial correlation between model parameters. To address this issue, I have developed a new gradual-deformation-based perturbation approach, which is flexible with regard to the number of model parameters as well as the perturbation strength. Compared to sequential resampling, this newly proposed approach was proven to be highly effective in decreasing the number of iterations required for drawing independent samples from the Bayesian posterior distribution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evidence has emerged that the initiation and growth of gliomas is sustained by a subpopulation of cancer-initiating cells (CICs). Because of the difficulty of using markers to tag CICs in gliomas, we have previously exploited more robust phenotypic characteristics, including a specific morphology and intrincic autofluorescence, to identify and isolate a subpopulation of glioma CICs, called FL1(+). The objective of this study was to further validate our method in a large cohort of human glioma and a mouse model of glioma. Seventy-four human gliomas of all grades and the GFAP-V(12)HA-ras B8 mouse model were analyzed for in vitro self-renewal capacity and their content of FL1(+). Nonneoplastic brain tissue and embryonic mouse brain were used as control. Genetic traceability along passages was assessed with microsatellite analysis. We found that FL1(+) cells from low-grade gliomas and from control nonneoplasic brain tissue show a lower level of autofluorescence and undergo a restricted number of cell divisions before dying in culture. In contrast, we found that FL1(+) cells derived from many but not all high-grade gliomas acquire high levels of autofluorescence and can be propagated in long-term cultures. Moreover, FL1(+) cells show a remarkable traceability over time in vitro and in vivo. Our results show that FL1(+) cells can be found in all specimens of a large cohort of human gliomas of different grades and in a model of genetically induced mouse glioma as well as nonneoplastic brain. However, their self-renewal capacity is variable and seems to be dependent on the tumor grade.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

n this paper the iterative MSFV method is extended to include the sequential implicit simulation of time dependent problems involving the solution of a system of pressure-saturation equations. To control numerical errors in simulation results, an error estimate, based on the residual of the MSFV approximate pressure field, is introduced. In the initial time steps in simulation iterations are employed until a specified accuracy in pressure is achieved. This initial solution is then used to improve the localization assumption at later time steps. Additional iterations in pressure solution are employed only when the pressure residual becomes larger than a specified threshold value. Efficiency of the strategy and the error control criteria are numerically investigated. This paper also shows that it is possible to derive an a-priori estimate and control based on the allowed pressure-equation residual to guarantee the desired accuracy in saturation calculation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction Lesion detection in multiple sclerosis (MS) is an essential part of its clinical diagnosis. In addition, radiological characterisation of MS lesions is an important research field that aims at distinguishing different MS types, monitoring drug response and prognosis. To date, various MR protocols have been proposed to obtain optimal lesion contrast for early and comprehensive diagnosis of the MS disease. In this study, we compare the sensitivity of five different MR contrasts for lesion detection: (i) the DIR sequence (Double Inversion Recovery, [4]), (ii) the Dark-fluid SPACE acquisition schemes, a 3D variant of a 2D FLAIR sequence [1], (iii) the MP2RAGE [2], an MP-RAGE variant that provides homogeneous T1 contrast and quantitative T1-values, and the sequences currently used for clinical MS diagnosis (2D FLAIR, MP-RAGE). Furthermore, we investigate the T1 relaxation times of cortical and sub-cortical regions in the brain hemispheres and the cerebellum at 3T. Methods 10 early-stage female MS patients (age: 31.64.7y; disease duration: 3.81.9y; disability score, EDSS: 1.80.4) and 10 healthy controls (age and gender-matched: 31.25.8y) were included in the study after obtaining informed written consent according to the local ethic protocol. All experiments were performed at 3T (Magnetom Trio a Tim System, Siemens, Germany) using a 32-channel head coil [5]. The imaging protocol included the following sequences, (all except for axial FLAIR 2D with 1x1x1.2 mm3 voxel and 256x256x160 matrix): DIR (TI1/TI2/TR XX/3652/10000 ms, iPAT=2, TA 12:02 min), MP-RAGE (TI/TR 900/2300 ms, iPAT=3, TA 3:47 min); MP2RAGE (TI1/TI2/TR 700/2500/5000 ms, iPAT=3, TA 8:22 min, cf. [2]); 3D FLAIR SPACE (only for patient 4-6, TI/TR 1800/5000 ms, iPAT=2, TA=5;52 min, cf. [1]); Axial FLAIR (0.9x0.9x2.5 mm3, 256x256x44 matrix, TI/TR 2500/9000 ms, iPAT=2, TA 4:05 min). Lesions were identified by two experienced neurologist and radiologist, manually contoured and assigned to regional locations (s. table 1). Regional lesion masks (RLM) from each contrast were compared for number and volumes of lesions. In addition, RLM were merged in a single "master" mask, which represented the sum of the lesions of all contrasts. T1 values were derived for each location from this mask for patients 5-10 (3D FLAIR contrast was missing for patient 1-4). Results & Discussion The DIR sequence appears the most sensitive for total lesions count, followed by the MP2RAGE (table 1). The 3D FLAIR SPACE sequence turns out to be more sensitive than the 2D FLAIR, presumably due to reduced partial volume effects. Looking for sub-cortical hemispheric lesions, the DIR contrast appears to be equally sensitive to the MP2RAGE and SPACE, but most sensitive for cerebellar MS plaques. The DIR sequence is also the one that reveals cortical hemispheric lesions best. T1 relaxation times at 3T in the WM and GM of the hemispheres and the cerebellum, as obtained with the MP2RAGE sequence, are shown in table 2. Extending previous studies, we confirm overall longer T1-values in lesion tissue and higher standard deviations compared to the non-lesion tissue and control tissue in healthy controls. We hypothesize a biological (different degree of axonal loss and demyelination) rather than technical origin. Conclusion In this study, we applied 5 MR contrasts including two novel sequences to investigate the contrast of highest sensitivity for early MS diagnosis. In addition, we characterized for the first time the T1 relaxation time in cortical and sub-cortical regions of the hemispheres and the cerebellum. Results are in agreement with previous publications and meaningful biological interpretation of the data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synthesis of polyhydroxyalkanoates (PHAs) from intermediates of fatty acid beta-oxidation was used as a tool to study fatty acid degradation in developing seeds of Arabidopsis. Transgenic plants expressing a peroxisomal PHA synthase under the control of a napin promoter accumulated PHA in developing seeds to a final level of 0. 06 mg g(-1) dry weight. In plants co-expressing a plastidial acyl-acyl carrier protein thioesterase from Cuphea lanceolata and a peroxisomal PHA synthase, approximately 18-fold more PHA accumulated in developing seeds. The proportion of 3-hydroxydecanoic acid monomer in the PHA was strongly increased, indicating a large flow of capric acid toward beta-oxidation. Furthermore, expression of the peroxisomal PHA synthase in an Arabidopsis mutant deficient in the enzyme diacylglycerol acyltransferase resulted in a 10-fold increase in PHA accumulation in developing seeds. These data indicate that plants can respond to the inadequate incorporation of fatty acids into triacylglycerides by recycling the fatty acids via beta-oxidation and that a considerable flow toward beta-oxidation can occur even in a plant tissue primarily devoted to the accumulation of storage lipids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: Magnetic resonance (MR) imaging and spectroscopy (MRS) allow the establishment of the anatomical evolution and neurochemical profiles of ischemic lesions. The aim of the present study was to identify markers of reversible and irreversible damage by comparing the effects of 10-mins middle cerebral artery occlusion (MCAO), mimicking a transient ischemic attack, with the effects of 30-mins MCAO, inducing a striatal lesion. Methods: ICR-CD1 mice were subjected to 10-mins (n = 11) or 30-mins (n = 9) endoluminal MCAO by filament technique at 0 h. The regional cerebral blood flow (CBF) was monitored in all animals by laser- Doppler flowmetry with a flexible probe fixed on the skull with < 20% of baseline CBF during ischemia and > 70% during reperfusion. All MR studies were carried out in a horizontal 14.1T magnet. Fast spin echo images with T2-weighted parameters were acquired to localize the volume of interest and evaluate the lesion size. Immediately after adjustment of field inhomogeneities, localized 1H MRS was applied to obtain the neurochemical profile from the striatum (6 to 8 microliters). Six animals (sham group) underwent nearly identical procedures without MCAO. Results: The 10-mins MCAO induced no MR- or histologically detectable lesion in most of the mice and a small lesion in some of them. We thus had two groups with the same duration of ischemia but a different outcome, which could be compared to sham-operated mice and more severe ischemic mice (30-mins MCAO). Lactate increase, a hallmark of ischemic insult, was only detected significantly after 30-mins MCAO, whereas at 3 h post ischemia, glutamine was increased in all ischemic mice independently of duration and outcome. In contrast, glutamate, and even more so, N-acetyl-aspartate, decreased only in those mice exhibiting visible lesions on T2-weighted images at 24 h. Conclusions: These results suggest that an increased glutamine/glutamate ratio is a sensitive marker indicating the presence of an excitotoxic insult. Glutamate and NAA, on the other hand, appear to predict permanent neuronal damage. In conclusion, as early as 3 h post ischemia, it is possible to identify early metabolic markers manifesting the presence of a mild ischemic insult as well as the lesion outcome at 24 h.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reliable quantification of the macromolecule signals in short echo-time H-1 MRS spectra is particularly important at high magnetic fields for an accurate quantification of metabolite concentrations (the neurochemical profile) due to effectively increased spectral resolution of the macromolecule components. The purpose of the present study was to assess two approaches of quantification, which take the contribution of macromolecules into account in the quantification step. H-1 spectra were acquired on a 14.1 T/26 cm horizontal scanner on five rats using the ultra-short echo-time SPECIAL (spin echo full intensity acquired localization) spectroscopy sequence. Metabolite concentrations were estimated using LCModel, combined with a simulated basis set of metabolites using published spectral parameters and either the spectrum of macromolecules measured in vivo, using an inversion recovery technique, or baseline simulated by the built-in spline function. The fitted spline function resulted in a smooth approximation of the in vivo macromolecules, but in accordance with previous studies using Subtract-QUEST could not reproduce completely all features of the in vivo spectrum of macromolecules at 14.1 T. As a consequence, the measured macromolecular 'baseline' led to a more accurate and reliable quantification at higher field strengths.