966 resultados para Flexural strengthening
Resumo:
Clayish earth-based mortars can be considered eco-efficient products for indoor plastering since they can contribute to improve important aspects of building performance and sustainability. Apart from being products with low embodied energy when compared to other types of mortars used for interior plastering, mainly due to the use raw clay as natural binder, earth-based plasters may give a significant contribution for health and comfort of inhabitants. Due to high hygroscopicity of clay minerals, earth-based mortars present a high adsorption and desorption capacity, particularly when compared to other type of mortars for interior plastering. This capacity allows earth-based plasters to act as a moisture buffer, balancing the relative humidity of the indoor environment and, simultaneously, acting as a passive removal material, improving air quality. Therefore, earth-based plasters may also passively promote the energy efficiency of buildings, since they may contribute to decreasing the needs of mechanical ventilation and air conditioning. This study is part of an ongoing research regarding earth-based plasters and focuses on mortars specifically formulated with soils extracted from Portuguese ‘Barrocal’ region, in Algarve sedimentary basin. This region presents high potential for interior plastering due to regional geomorphology, that promote the occurrence of illitic soils characterized by a high adsorption capacity and low expansibility. More specifically, this study aims to assess how clayish earth and sand ratio of mortars formulation can influence the physical and mechanical properties of plasters. For this assessment four mortars were formulated with different volumetric proportions of clayish earth and siliceous sand. The results from the physical and mechanical characterization confirmed the significantly low linear shrinkage of all the four mortars, as well as their extraordinary adsorption-desorption capacity. These results presented a positive correlation with mortars´ clayish earth content and are consistent with the mineralogical analysis, that confirmed illite as the prevalent clay mineral in the clayish earth used for this study. Regarding mechanical resistance, although the promising results of the adhesion test, the flexural and compressive strength results suggest that the mechanical resistance of these mortars should be slightly improved. Considering the present results the mortars mechanical resistance improvement may be achieved through the formulation of mortars with higher clayish earth content, or alternatively, through the addition of natural fibers to mortars formulation, very common in this type of mortars. Both those options will be investigated in future research.
Resumo:
The use of wastes and industrial by-products as building materials is an important issue in order to decrease costs with waste management and the embodied energy of building products. In this study scrap tire rubber was used as additional aggregate of mortars based on natural hydraulic lime NHL 3.5 and natural sand. Different particle size fractions and proportions of scrap tire rubber were used: a mix obtained directly from industry and separated fine, medium and coarse fractions; 0 %, 18 %, 36 % and 54 % of the weight of binder, corresponding to 2.5 %, 5 % and 7.5 % of the weight of sand. As mortars based on NHL specifications became stricter with the current version of EN 459–1:2015, the influence of the rubber’s additions on the mortars’ fresh state, mechanical and physical performance is presented in this work: flow table consistency, water retention, dynamic elasticity modulus, flexural and compressive strength, open porosity and bulk density, capillary absorption, drying and thermal conductivity are studied. The use of the rubber mix coming from the waste tire industry seems advantageous and may open possibilities for use as raw material by the mortars industry.
Resumo:
O estágio curricular, inserido na componente não-lectiva do mestrado em Comunicação Estratégica é a ferramenta principal no desenvolvimento deste relatório. A TecMinho- Associação Universidade -Empresa para o Desenvolvimento, onde decorreu o estágio, é uma instituição de vanguarda, que promove a inovação, o empreendedorismo e o desenvolvimento de diferentes competências. Foca-se em diversas vertentes, desde a investigação e tecnologias, à formação, o empreendedorismo e a planos de negócio para empresas. Uma atividade particularmente relevante é o programa IdeaLab, um acelerador de ideias de negócio, que oferece aos promotores conhecimentos e ferramentas que lhes permite melhorar a concepção de produtos e serviços, e de ideias inovadoras, de modo a reforçar a sua proposta de valor. Neste programa são destacadas as competências empreendedoras através de workshops temáticos, coaching, networking e pré-incubação.
Resumo:
Urban mobility is one of the main challenges facing urban areas due to the growing population and to traffic congestion, resulting in environmental pressures. The pathway to urban sustainable mobility involves strengthening of intermodal mobility. The integrated use of different transport modes is getting more and more important and intermodality has been mentioned as a way for public transport compete with private cars. The aim of the current dissertation is to define a set of strategies to improve urban mobility in Lisbon and by consequence reduce the environmental impacts of transports. In order to do that several intermodal practices over Europe were analysed and the transport systems of Brussels and Lisbon were studied and compared, giving special attention to intermodal systems. In the case study was gathered data from both cities in the field, by using and observing the different transport modes, and two surveys were done to the cities users. As concluded by the study, Brussels and Lisbon present significant differences. In Brussels the measures to promote intermodality are evident, while in Lisbon a lot still needs to be done. It also made clear the necessity for improvements in Lisbon’s public transports to a more intermodal passenger transport system, through integration of different transport modes and better information and ticketing system. Some of the points requiring developments are: interchanges’ waiting areas; integration of bicycle in public transport; information about correspondences with other transport modes; real-time information to passengers pre-trip and on-trip, especially in buses and trams. After the identification of the best practices in Brussels and the weaknesses in Lisbon the possibility of applying some of the practices in Brussels to Lisbon was evaluated. Brussels demonstrated to be a good example of intermodality and for that reason some of the recommendations to improve intermodal mobility in Lisbon can follow the practices in place in Brussels.
Resumo:
The main purpose of this report is to present the work developed during the curricular internship on the Commercial Arbitration Centre of the Portuguese Chamber of Commerce and Industry. It is structured in two parts. The first, in which i´ll present the CAC, its organic structure and its activities. In this part I will also show the work I´ve done during the internship, as well as i´m going to identified, and comment, the tasks performed. The second part presents a study on arbitration awards that aimed to determine the amount “split the baby awards”, that is to say those that condemn in (approximately) half of the request. In addition to these data, I collected from sentences other, such as the duration of the cases, the number of foreign persons in each process, the number of foreign arbitrators, the language of proceedings etc. What is expected with this paperwork is to be able to clarify, and make known, some aspects on Arbitration in Portugal, thus contributing to the strengthening of the role of the Arbitration and Arbitral Justice.
Resumo:
This paper presents a new approach of pre-defined profiles, based in different voltage and current values, to control the charging and discharging processes of batteries in order to assess their performance. This new approach was implemented in a prototype that was specially developed for such purpose. This prototype is a smart power electronics platform that allows to perform batteries analysis and to control the charging and discharging processes through a web application using pre-defined profiles. This platform was developed aiming to test different batteries technologies. Considering the relevance of the energy storage area based in batteries, especially for the batteries applied to electric mobility systems, this platform allows to perform controlled tests to the batteries, in order to analyze the batteries performance under different scenarios of operation. Besides the results obtained with the batteries, this work also intends to produce results that can contribute to an involvement in the strengthening of the Internet-of-Things.
Resumo:
The effect of freeze–thaw cycles on concrete is of great importance for durability evaluation of concrete structures in cold regions. In this paper, damage accumulation was studied by following the fractional change of impedance (FCI) with number of freeze–thaw cycles (N). The nano-carbon black (NCB), carbon fiber (CF) and steel fiber (SF) were added to plain concrete to produce the triphasic electrical conductive (TEC) and ductile concrete. The effects of NCB, CF and SF on the compressive strength, flexural properties, electrical impedance were investigated. The concrete beams with different dosages of conductive materials were studied for FCI, N and mass loss (ML), the relationship between FCI and N of conductive concrete can be well defined by a first order exponential decay curve. It is noted that this nondestructive and sensitive real-time testing method is meaningful for evaluating of freeze–thaw damage in concrete.
Resumo:
The construction industry is responsible for high energy and raw materials consumption. Thus, it is important to minimize the high energy consumption by taking advantage of renewable energy sources and reusing industrial waste, decreasing the extraction of natural materials. The mortars with incorporation of phase change materials (PCM) have the ability to regulate the temperature inside buildings, contributing to the thermal comfort and reduction of the use of heating and cooling equipment, using only the energy supplied by the sun. The simultaneous incorporation of PCM and fly ash (FA) can reduce the energy consumption and the amount of materials landfilled. However, the addition of these materials in mortars modifies its characteristics. The main purpose of this study was the production and characterization in the fresh and hardened state of mortars with incorporation of different contents of PCM and FA. The binders studied were aerial lime, hydraulic lime, gypsum and cement. The proportion of PCM studied was 0%, 20%, 40% and 60% of the mass of the sand. The content of fly ash added to the mortars was 0%, 20%, 40% and 60% of the mass of the binder. It was possible to observe that the incorporation of PCM and fly ash in mortars caused differences in properties such as workability, microstructure, water absorption, compressive strength, flexural strength and adhesion.
Resumo:
This study deals with the characterization of masonry mortars produced with different binders and sands. Several properties of the mortars were determined, like consistence, compressive and flexural strengths, shrinkage and fracture energy. By varying the type of binder (Portland cement, hydrated lime and hydraulic lime) and the type of sand (natural or artificial), it was possible to draw some conclusions about the influence of the composition on mortars properties. The results showed that the use of Portland cement makes the achievement of high strength classes easier. This was due to the slower hardening of lime compared with cement. The results of fracture energy tests showed much higher values for artificial sand mortars when compared with natural sand ones. This is due to the higher roughness of artificial sand particles which provided better adhesion between sand and binder.
Resumo:
Currently we are witnessing a huge concern of society with the parameters of comfort of the buildings and the energetic consumptions. It is known that there is a huge consumption of non-renewable sources of energy. Thus, it is urgent to develop and explore ways to take advantage of renewable sources of energy by improving the energy efficiency of buildings. The mortars with incorporation of phase change materials (PCM) have the ability to regulate the temperature inside buildings, contributing to the thermal comfort and reduction of the use of heating and cooling equipment, using only the energy supplied by the sun. However, the incorporation of phase change materials in mortars modifies its characteristics. The main purpose of this study was mechanical and thermal characterization of mortars with incorporation of PCM in mortars based in different binders. The binders studied were aerial lime, hydraulic lime, gypsum and cement. For each type of binder a reference composition (0% PCM) and a composition with incorporation of 40% of PCM were developed. It was possible to observe that the incorporation of PCM in mortars caused differences in properties such as workability, compressive strength, flexural strength and adhesion, however leads to an improvement of thermal behavior.
Resumo:
This paper presents the main features of finite element FE numerical model developed using the computer code FEMIX to predict the near-surface mounted NSM carbon-fiber-reinforced polymer CFRP rods shear repair contribution to corroded reinforced concrete RC beams. In the RC beams shear repaired with NSM technique, the Carbon Fibre Reinforced Polymer (CFRP) rods are placed inside pre-cut grooves onto the concrete cover of the RC beam’s lateral faces and are bonded to the concrete with high epoxy adhesive. Experimental and 3D numerical modelling results are presented in this paper in terms of load-deflection curves, and failure modes for 4 short corroded beams: two corroded beams (A1CL3-B and A1CL3-SB) and two control beams (A1T-B and A1T-SB), the beams noted with B were let repaired in bending only with NSM CFRP rods while the ones noted with SB were repaired in both bending and shear with NSM technique. The corrosion of the tensile steel bars and its effect on the shear capacity of the RC beams was discussed. Results showed that the FE model was able to capture the main aspects of the experimental load-deflection curves of the RC beams, moreover it has presented the experimental failure modes and FE numerical modelling crack patterns and both gave similar results for non-shear repaired beams which failed in diagonal tension mode of failure and for shear-repaired beams which failed due to large flexural crack at the middle of the beams along with the concrete crushing, three dimensional crack patterns were produced for shear-repaired beams in order to investigate the splitting cracks occurred at the middle of the beams and near the support.
Resumo:
Using prestressed near surface mounted fibre reinforced polymers (NSM-FRP) is nowadays regaining the attention from the scientific community for the strengthening of existing reinforced concrete (RC) structures. The application of prestressed internal FRP bars and externally bonded prestressed FRPs has already been deeply investigated and revealed considerable benefits when compared to the corresponding passive solutions. A certain amount of prestress provides benefits mainly associated to structural integrity and material durability. Immediately after prestress transference, it is possible to close some of the existing cracks, decreasing the susceptibility of the element to corrosion and, a certain amount of deflection can be recovered due to the creation of a negative curvature. However, very few studies have been carried out to properly assess the preservation of prestress over time. In this context, several reinforced concrete beams strengthened with prestressed NSM carbon FRP (CFRP) laminates were prestressed and monitored for about 40 days. The data obtained from these experimental programs is in this paper presented and analysed. The observed prestress losses were later modelled using finite elements analysis and, although this topic is not addressed in this paper, the obtained results revealed considerable precision. The largest strain losses in the CFRP laminate were found to be mainly located in the extremities of the bonded length, while in the central zone most of the applied pre-strain was retained over time. The highest CFRP strain losses were observed in the first 6 to 12 days after prestress transfer, suggesting that the application of prestressed NSM-FRP will be very effective over time.
Resumo:
Five full-scale timber floors were tested in order to analyse the in-plane behaviour of these structural systems. The main objective was an assessment of the effectiveness of in-plane strengthening using cross-laminated timber (CLT). To this end, one unstrengthened specimen (original), one specimen strengthened with a second layer of floorboards, two specimens strengthened with three CLT panels, and one specimen strengthened with two CLT panels, were tested. A numerical analysis was then performed in order to analyse the composite behaviour of the timber floors in more detail. Due to its importance as regards composite behaviour, the first phase of the experimental programme was composed of push-out tests on specimens representing the shear connection between the timber beams and the CLT panels. This paper describes the tests performed and the numerical modelling applied to evaluate the composite behaviour of the strengthened timber floors. The use of CLT panels is revealed to be an effective way to increase the in-plane stiffness of timber floors, through which the behaviour of the composite structure can be significantly changed, depending on the connection applied, or modified as required.
Resumo:
The authors appreciate the collaboration of the following labs: Civitest for developing DHCC materials, PIEP for conducting VARTM process (Eng. Luis Oliveira) and Department of Civil Engineering of Minho University to perform the tests (Mr. Antonio Matos and Eng. Marco Jorge).
Resumo:
O presente artigo é dedicado à avaliação experimental da eficiência do reforço com fibra de aço em termos da resistência à punção de lajes lisa carregadas simetricamente. Para este fim, oito lajes de 2550 x 2550 x 150 mm3 foram ensaiadas até a ruína, onde se investigou a influência do consumo de fibras (0, 60, 75 e 90 kg/m3) e da resistência do concreto (50 e 70 MPa). Duas lajes de referência, sem fibras, uma para cada classe de resistência do concreto, e uma laje para cada consumo de fibra e para cada classe de resistência do concreto compuseram o programa experimental. Todas as lajes foram armadas à flexão com barras de aço (armadura convencional) de forma a garantir a ruína por punção das lajes de referência. O único reforço transversal foi garantido pelas fibras de aço hooked ends com comprimento e diâmetro de 37 e 0,55 mm, respectivamente, e resistência à tração de aproximadamente 1100 MPa. Os resultados revelaram que as fibras de aço são muito eficientes em converter uma ruína frágil por cisalhamento em uma ruína dúctil por flexão, aprimorando ambos, carga de ruptura e deslocamento. Neste artigo o programa experimental é abordado em detalhe e os principais resultados são apresentados e discutidos.