967 resultados para Flail space model
Resumo:
In Statnote 9, we described a one-way analysis of variance (ANOVA) ‘random effects’ model in which the objective was to estimate the degree of variation of a particular measurement and to compare different sources of variation in space and time. The illustrative scenario involved the role of computer keyboards in a University communal computer laboratory as a possible source of microbial contamination of the hands. The study estimated the aerobic colony count of ten selected keyboards with samples taken from two keys per keyboard determined at 9am and 5pm. This type of design is often referred to as a ‘nested’ or ‘hierarchical’ design and the ANOVA estimated the degree of variation: (1) between keyboards, (2) between keys within a keyboard, and (3) between sample times within a key. An alternative to this design is a 'fixed effects' model in which the objective is not to measure sources of variation per se but to estimate differences between specific groups or treatments, which are regarded as 'fixed' or discrete effects. This statnote describes two scenarios utilizing this type of analysis: (1) measuring the degree of bacterial contamination on 2p coins collected from three types of business property, viz., a butcher’s shop, a sandwich shop, and a newsagent and (2) the effectiveness of drugs in the treatment of a fungal eye infection.
Resumo:
The visual system pools information from local samples to calculate textural properties. We used a novel stimulus to investigate how signals are combined to improve estimates of global orientation. Stimuli were 29 × 29 element arrays of 4 c/deg log Gabors, spaced 1° apart. A proportion of these elements had a coherent orientation (horizontal/vertical) with the remainder assigned random orientations. The observer's task was to identify the global orientation. The spatial configuration of the signal was modulated by a checkerboard pattern of square checks containing potential signal elements. The other locations contained either randomly oriented elements (''noise check'') or were blank (''blank check''). The distribution of signal elements was manipulated by varying the size and location of the checks within a fixed-diameter stimulus. An ideal detector would only pool responses from potential signal elements. Humans did this for medium check sizes and for large check sizes when a signal was presented in the fovea. For small check sizes, however, the pooling occurred indiscriminately over relevant and irrelevant locations. For these check sizes, thresholds for the noise check and blank check conditions were similar, suggesting that the limiting noise is not induced by the response to the noise elements. The results are described by a model that filters the stimulus at the potential target orientations and then combines the signals over space in two stages. The first is a mandatory integration of local signals over a fixed area, limited by internal noise at each location. The second is a taskdependent combination of the outputs from the first stage. © 2014 ARVO.
Resumo:
We present a complex neural network model of user behavior in distributed systems. The model reflects both dynamical and statistical features of user behavior and consists of three components: on-line and off-line models and change detection module. On-line model reflects dynamical features by predicting user actions on the basis of previous ones. Off-line model is based on the analysis of statistical parameters of user behavior. In both cases neural networks are used to reveal uncharacteristic activity of users. Change detection module is intended for trends analysis in user behavior. The efficiency of complex model is verified on real data of users of Space Research Institute of NASU-NSAU.
Resumo:
This paper is partially supported by the Bulgarian Science Fund under grant Nr. DO 02– 359/2008.
Resumo:
∗Research supported in part by NSF grant INT-9903302.
Resumo:
A model of the cognitive process of natural language processing has been developed using the formalism of generalized nets. Following this stage-simulating model, the treatment of information inevitably includes phases, which require joint operations in two knowledge spaces – language and semantics. In order to examine and formalize the relations between the language and the semantic levels of treatment, the language is presented as an information system, conceived on the bases of human cognitive resources, semantic primitives, semantic operators and language rules and data. This approach is applied for modeling a specific grammatical rule – the secondary predication in Russian. Grammatical rules of the language space are expressed as operators in the semantic space. Examples from the linguistics domain are treated and several conclusions for the semantics of the modeled rule are made. The results of applying the information system approach to the language turn up to be consistent with the stages of treatment modeled with the generalized net.
On Multi-Dimensional Random Walk Models Approximating Symmetric Space-Fractional Diffusion Processes
Resumo:
Mathematics Subject Classification: 26A33, 47B06, 47G30, 60G50, 60G52, 60G60.
Resumo:
A new 3D implementation of a hybrid model based on the analogy with two-phase hydrodynamics has been developed for the simulation of liquids at microscale. The idea of the method is to smoothly combine the atomistic description in the molecular dynamics zone with the Landau-Lifshitz fluctuating hydrodynamics representation in the rest of the system in the framework of macroscopic conservation laws through the use of a single "zoom-in" user-defined function s that has the meaning of a partial concentration in the two-phase analogy model. In comparison with our previous works, the implementation has been extended to full 3D simulations for a range of atomistic models in GROMACS from argon to water in equilibrium conditions with a constant or a spatially variable function s. Preliminary results of simulating the diffusion of a small peptide in water are also reported.
Resumo:
Volunteered Service Composition (VSC) refers to the process of composing volunteered services and resources. These services are typically published to a pool of voluntary resources. The composition aims at satisfying some objectives (e.g. Utilizing storage and eliminating waste, sharing space and optimizing for energy, reducing computational cost etc.). In cases when a single volunteered service does not satisfy a request, VSC will be required. In this paper, we contribute to three approaches for composing volunteered services: these are exhaustive, naïve and utility-based search approach to VSC. The proposed new utility-based approach, for instance, is based on measuring the utility that each volunteered service can provide to each request and systematically selects the one with the highest utility. We found that the utility-based approach tend to be more effective and efficient when selecting services, while minimizing resource waste when compared to the other two approaches.
Resumo:
2010 Mathematics Subject Classification: 60E05, 62P05.
Resumo:
We compare spot patterns generated by Turing mechanisms with those generated by replication cascades, in a model one-dimensional reaction-diffusion system. We determine the stability region of spot solutions in parameter space as a function of a natural control parameter (feed-rate) where degenerate patterns with different numbers of spots coexist for a fixed feed-rate. While it is possible to generate identical patterns via both mechanisms, we show that replication cascades lead to a wider choice of pattern profiles that can be selected through a tuning of the feed-rate, exploiting hysteresis and directionality effects of the different pattern pathways.
Resumo:
The quantization scheme is suggested for a spatially inhomogeneous 1+1 Bianchi I model. The scheme consists in quantization of the equations of motion and gives the operator (so called quasi-Heisenberg) equations describing explicit evolution of a system. Some particular gauge suitable for quantization is proposed. The Wheeler-DeWitt equation is considered in the vicinity of zero scale factor and it is used to construct a space where the quasi-Heisenberg operators act. Spatial discretization as a UV regularization procedure is suggested for the equations of motion.
Resumo:
Contemporary models of contrast integration across space assume that pooling operates uniformly over the target region. For sparse stimuli, where high contrast regions are separated by areas containing no signal, this strategy may be sub-optimal because it pools more noise than signal as area increases. Little is known about the behaviour of human observers for detecting such stimuli. We performed an experiment in which three observers detected regular textures of various areas, and six levels of sparseness. Stimuli were regular grids of horizontal grating micropatches, each 1 cycle wide. We varied the ratio of signals (marks) to gaps (spaces), with mark:space ratios ranging from 1 : 0 (a dense texture with no spaces) to 1 : 24. To compensate for the decline in sensitivity with increasing distance from fixation, we adjusted the stimulus contrast as a function of eccentricity based on previous measurements [Baldwin, Meese & Baker, 2012, J Vis, 12(11):23]. We used the resulting area summation functions and psychometric slopes to test several filter-based models of signal combination. A MAX model failed to predict the thresholds, but did a good job on the slopes. Blanket summation of stimulus energy improved the threshold fit, but did not predict an observed slope increase with mark:space ratio. Our best model used a template matched to the sparseness of the stimulus, and pooled the squared contrast signal over space. Templates for regular patterns have also recently been proposed to explain the regular appearance of slightly irregular textures (Morgan et al, 2012, Proc R Soc B, 279, 2754–2760)
Resumo:
In machine learning, Gaussian process latent variable model (GP-LVM) has been extensively applied in the field of unsupervised dimensionality reduction. When some supervised information, e.g., pairwise constraints or labels of the data, is available, the traditional GP-LVM cannot directly utilize such supervised information to improve the performance of dimensionality reduction. In this case, it is necessary to modify the traditional GP-LVM to make it capable of handing the supervised or semi-supervised learning tasks. For this purpose, we propose a new semi-supervised GP-LVM framework under the pairwise constraints. Through transferring the pairwise constraints in the observed space to the latent space, the constrained priori information on the latent variables can be obtained. Under this constrained priori, the latent variables are optimized by the maximum a posteriori (MAP) algorithm. The effectiveness of the proposed algorithm is demonstrated with experiments on a variety of data sets. © 2010 Elsevier B.V.
Resumo:
Meier (2012) gave a "mathematical logic foundation" of the purely measurable universal type space (Heifetz and Samet, 1998). The mathematical logic foundation, however, discloses an inconsistency in the type space literature: a finitary language is used for the belief hierarchies and an infinitary language is used for the beliefs. In this paper we propose an epistemic model to fix the inconsistency above. We show that in this new model the universal knowledgebelief space exists, is complete and encompasses all belief hierarchies. Moreover, by examples we demonstrate that in this model the players can agree to disagree Aumann (1976)'s result does not hold, and Aumann and Brandenburger (1995)'s conditions are not sufficient for Nash equilibrium. However, we show that if we substitute selfevidence (Osborne and Rubinstein, 1994) for common knowledge, then we get at that both Aumann (1976)'s and Aumann and Brandenburger (1995)'s results hold.