921 resultados para Finite-element-method
Resumo:
The paper is based on qualitative properties of the solution of the Navier-Stokes equations for incompressible fluid, and on properties of their finite element solution. In problems with corner-like singularities (e.g. on the well-known L-shaped domain) usually some adaptive strategy is used. In this paper we present an alternative approach. For flow problems on domains with corner singularities we use the a priori error estimates and asymptotic expansion of the solution to derive an algorithm for refining the mesh near the corner. It gives very precise solution in a cheap way. We present some numerical results.
Resumo:
An immersed finite element method is presented to compute flows with complex moving boundaries on a fixed Cartesian grid. The viscous, incompressible fluid flow equations are discretized with b-spline basis functions. The two-scale relation for b-splines is used to implement an elegant and efficient technique to satisfy the LBB condition. On non-grid-aligned fluid domains and at moving boundaries, the boundary conditions are enforced with a consistent penalty method as originally proposed by Nitsche. In addition, a special extrapolation technique is employed to prevent the loss of numerical stability in presence of arbitrarily small cut-cells. The versatility and accuracy of the proposed approach is demonstrated by means of convergence studies and comparisons with previous experimental and computational investigations.