669 resultados para FROG


Relevância:

10.00% 10.00%

Publicador:

Resumo:

One way developing embryos regulate the expression of their genes is by localizing mRNAs to specific subcellular regions. In the oocyte of the frog, Xenopus laevis, many RNAs are localized specifically to the animal or the vegetal halves of the oocyte. The localization of these RNAs contributes to the primary polarity of the oocyte, the asymmetry that is the basis for patterning and lineage specification in the embryo. I have screened a cDNA library for clones containing the Xlsirt repeat, an element known to target RNAs to the vegetal cortex of the oocyte. I have identified seventeen cDNA clones that contain this element. One of these cDNAs encodes the RNA binding protein Hermes. The Hermes mRNA is localized to the vegetal cortex of the oocyte. Additionally, Hermes protein is also vegetally localized in the oocyte and is found in subcellular structures known to contain localized mRNAs. This suggests that Hermes might interact with localized RNAs. While Hermes protein is present in oocytes, it disappears at germinal vesicle breakdown during maturation. We therefore believe that the time period during which Hermes functions is during oogenesis or maturation prior to the time of Hermes degradation. To determine Hermes function, an antisense depletion strategy was used that involved injecting morpholino oligos (HE-MO) into oocytes. Injection of these morpholinos causes the level of Hennes protein to drop prematurely during maturation. Embryos produced from these oocytes exhibit cleavage defects that are most prevalent in the vegetal blastomeres. The phenotype can be partially rescued by injection of a heterologous Hermes mRNA and is therefore specific to Hermes. The Hermes expression and depletion results are consistent with a model in which Hermes interacts with one or more vegetally localized mRNAs in the oocyte and during the early stages of maturation. The interaction is required for cleavage of the vegetal blastomeres. Therefore, it is likely that at least one mRNA that interacts with Hermes is a cell cycle regulator. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We demonstrate a simple self-referenced single-shot method for simultaneously measuring two different arbitrary pulses, which can potentially be complex and also have very different wavelengths. The method is a variation of cross-correlation frequency-resolved optical gating (XFROG) that we call double-blind (DB) FROG. It involves measuring two spectrograms, both of which are obtained simultaneously in a single apparatus. DB FROG retrieves both pulses robustly by using the standard XFROG algorithm, implemented alternately on each of the traces, taking one pulse to be ?known? and solving for the other. We show both numerically and experimentally that DB FROG using a polarization-gating beam geometry works reliably and appears to have no nontrivial ambiguities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Estudo sobre as construções simbólicas e identitárias da mulher presentes na narrativa e na estrutura das personagens femininas do filme Malévola (2014) – produção dos estúdios Disney (EUA). A narrativa é inspirada no conto de fadas “A Bela Adormecida do Bosque” e distingue-se pela perspectiva feminina, modificando as possibilidades de interpretação, além de possibilitar a quebra do paradigma dicotômico relacionado ao Bem e ao Mal. A pesquisa tem por objetivo estudar a evolução das construções imaginárias da mulher no cinema e traçar paralelos entre as características arquetípicas das personagens de Malévola em relação à identidade da mulher na contemporaneidade. Para tal, será tomado como referencial teórico os estudos do imaginário social, com as obras de Gilbert Durand, Edgar Morin e, em especial, Michel Maffesoli; conceitos da psicanálise a partir dos trabalhos de C.G. Jung, Erich Neumann, Marie-Louise Von Franz e Clarissa Pinkola Estés; as teorias de Stuart Hall, Laura Mulvey e Gilles Lipovetsky relacionadas aos estudos culturais com ênfase em gênero; e também o ecofeminismo através dos trabalhos de autoras como Vandana Shiva e Maria Mies. Nosso referencial teórico-metodológico é a Hermenêutica de Profundidade (HP) visando à interpretação da estrutura simbólica de nosso objeto. Resultam desta pesquisa a verificação de um processo de saturação de padrões identitários e simbólicos provindos da modernidade e a evolução de novas dinâmicas nas narrativas presentes nas mídias e na comunicação

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We previously isolated a novel rat cDNA encoding a basic helix–loop–helix transcription factor named Relax, whose expression in the developing central nervous system is strictly limited to discrete domains containing precursor cells. The timing of Relax expression coincides with neuronal differentiation. To investigate the involvement of Relax in neurogenesis we tested whether Relax activated neural genes in the ectoderm by injecting Relax RNA into Xenopus embryos. We demonstrate that ectopic Relax expression induces a persistent enlargement of the neural plate and converts presumptive epidermal cells into neurons. This indicates that Relax, when overexpressed in Xenopus embryos, has a neuronal fate-determination function. Analyses both of Relax overexpression in the frog and of the distribution of Relax in the rat neural tube strongly suggest that Relax is a neuronal fate-determination gene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When a hair cell is stimulated by positive deflection of its hair bundle, increased tension in gating springs opens transduction channels, permitting cations to enter stereocilia and depolarize the cell. Ca2+ is thought to be required in mechanoelectrical transduction, for exposure of hair bundles to Ca2+ chelators eliminates responsiveness by disrupting tip links, filamentous interstereociliary connections that probably are the gating springs. Ca2+ also participates in adaptation to stimuli by controlling the activity of a molecular motor that sets gating-spring tension. Using a flexible glass fiber to measure hair-bundle stiffness, we investigated the effect of Ca2+ concentration on stiffness before and after the disruption of gating springs. The stiffness of intact hair bundles depended nonmonotonically on the extracellular Ca2+ concentration; the maximal stiffness of ≈1200 μN⋅m−1 occurred when bundles were bathed in solutions containing 250 μM Ca2+, approximately the concentration found in frog endolymph. For cells exposed to solutions with sufficient chelator capacity to reduce the Ca2+ concentration below ≈100 nM, hair-bundle stiffness fell to ≈200 μN⋅m−1 and no longer exhibited Ca2+-dependent changes. Because cells so treated lost mechanoelectrical transduction, we attribute the reduction in bundle stiffness to tip-link disruption. The results indicate that gating springs are not linearly elastic; instead, they stiffen with increased strain, which rises with adaptation-motor activity at the physiological extracellular Ca2+ concentration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The murine B29 (Igβ) promoter is B cell specific and contains essential SP1, ETS, OCT, and Ikaros motifs. Flanking 5′ DNA sequences inhibit B29 promoter activity, suggesting this region contains silencer elements. Two adjacent 5′ DNA segments repress transcription by the murine B29 promoter in a position- and orientation-independent manner, analogous to known silencers. Both these 5′ segments also inhibit transcription by several heterologous promoters in B cells, including mb-1, c-fos, and human B29. These 5′ segments also inhibit transcription by the c-fos promoter in T cells suggesting they are not B cell-specific elements. DNase I footprint analyses show an approximately 70-bp protected region overlapping the boundary between the two negative regulatory DNA segments and corresponding to binding sites for at least two different DNA-binding proteins. Within this footprint, two unrelated 30-bp cis-acting DNA motifs (designated TOAD and FROG) function as position- and orientation-independent silencers when located directly 5′ of the murine B29 promoter. These two silencer motifs act cooperatively to restrict the transcriptional activity of the B29 promoter. Neither of these motifs resembles any known silencers. Mutagenesis of the TOAD and FROG motifs in their respective 5′ DNA segments eliminates the silencing activity of these upstream regions, indicating these two motifs as the principal B29 silencer elements within these regions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

N-methyl-d-aspartate receptor (NMDAR) activation has been implicated in forms of synaptic plasticity involving long-term changes in neuronal structure, function, or protein expression. Transcriptional alterations have been correlated with NMDAR-mediated synaptic plasticity, but the problem of rapidly targeting new proteins to particular synapses is unsolved. One potential solution is synapse-specific protein translation, which is suggested by dendritic localization of numerous transcripts and subsynaptic polyribosomes. We report here a mechanism by which NMDAR activation at synapses may control this protein synthetic machinery. In intact tadpole tecta, NMDAR activation leads to phosphorylation of a subset of proteins, one of which we now identify as the eukaryotic translation elongation factor 2 (eEF2). Phosphorylation of eEF2 halts protein synthesis and may prepare cells to translate a new set of mRNAs. We show that NMDAR activation-induced eEF2 phosphorylation is widespread in tadpole tecta. In contrast, in adult tecta, where synaptic plasticity is reduced, this phosphorylation is restricted to short dendritic regions that process binocular information. Biochemical and anatomical evidence shows that this NMDAR activation-induced eEF2 phosphorylation is localized to subsynaptic sites. Moreover, eEF2 phosphorylation is induced by visual stimulation, and NMDAR blockade before stimulation eliminates this effect. Thus, NMDAR activation, which is known to mediate synaptic changes in the developing frog, could produce local postsynaptic alterations in protein synthesis by inducing eEF2 phosphorylation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have examined the behavior of demembranated sperm heads when injected into the germinal vesicle (GV) of amphibian oocytes. Xenopus sperm heads injected into Xenopus GVs swelled immediately and within hours began to stain with an antibody against RNA polymerase II (Pol II). Over time each sperm head became a loose mass of chromosome-like threads, which by 24–48 h resolved into individually recognizable lampbrush chromosomes (LBCs). Although LBCs derived from sperm are unreplicated single chromatids, their morphology and immunofluorescent staining properties were strikingly similar to those of the endogenous lampbrush bivalents. They displayed typical transcriptionally active loops extending from an axis of condensed chromomeres, as well as locus-specific “landmarks.” Experiments with [3H]GTP and actinomycin D demonstrated that transcription was not necessary for the initial swelling of the sperm heads and acquisition of Pol II but was required for maintenance of the lampbrush loops. Splicing was not required at any stage during formation of sperm LBCs. When Xenopus sperm heads were injected into GVs of the newt Notophthalmus, the resulting sperm LBCs displayed very long loops with pronounced Pol II axes, like those of the endogenous newt LBCs; as expected, they stained with antibodies against newt-specific proteins. Other heterologous injections, including sperm heads of the frog Rana pipiens and the zebrafish Danio rerio in Xenopus GVs, confirm that LBCs can be derived from taxonomically distant organisms. The GV system should help identify both cis- and trans-acting factors needed to convert condensed chromatin into transcriptionally active LBCs. It may also be useful in producing cytologically analyzable chromosomes from organisms whose oocytes do not go through a typical lampbrush phase or cannot be manipulated by current techniques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In anoxia, mitochondria change from being ATP producers to potentially powerful ATP consumers. This change occurs, because the mitochondrial F1F0-ATPase begins to hydrolyze ATP to avoid the collapse of the proton motive force. Species that can survive prolonged periods of O2 lack must limit such ATP use; otherwise, this process would dominate glycolytic metabolism and threaten ATP delivery to essential ATP-consuming processes of the cell (e.g., ion-motive ATPases). There are two ways to limit ATP hydrolysis by the F1F0-ATPase, namely (i) reduction of the proton conductance of the mitochondrial inner membrane and (ii) inhibition of the enzyme. We assessed these two possibilities by using intact mitochondria isolated from the skeletal muscle of anoxia-tolerant frogs. Our results show that proton conductance is unaltered between normoxia and anoxia. However, ATP use by the F1F0-ATPase is limited in anoxia by a profound inhibition of the enzyme. Even so, ATP use by the F1F0-ATPase might account for ≈9% of the ATP turnover in anoxic frog skeletal muscle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several mutations that cause severe forms of the human disease autosomal dominant retinitis pigmentosa cluster in the C-terminal region of rhodopsin. Recent studies have implicated the C-terminal domain of rhodopsin in its trafficking on specialized post-Golgi membranes to the rod outer segment of the photoreceptor cell. Here we used synthetic peptides as competitive inhibitors of rhodopsin trafficking in the frog retinal cell-free system to delineate the potential regulatory sequence within the C terminus of rhodopsin and model the effects of severe retinitis pigmentosa alleles on rhodopsin sorting. The rhodopsin C-terminal sequence QVS(A)PA is highly conserved among different species. Peptides that correspond to the C terminus of bovine (amino acids 324–348) and frog (amino acids 330–354) rhodopsin inhibited post-Golgi trafficking by 50% and 60%, respectively, and arrested newly synthesized rhodopsin in the trans-Golgi network. Peptides corresponding to the cytoplasmic loops of rhodopsin and other control peptides had no effect. When three naturally occurring mutations: Q344ter (lacking the last five amino acids QVAPA), V345M, and P347S were introduced into the frog C-terminal peptide, the inhibitory activity of the peptides was no longer detectable. These observations suggest that the amino acids QVS(A)PA comprise a signal that is recognized by specific factors in the trans-Golgi network. A lack of recognition of this sequence, because of mutations in the last five amino acids causing autosomal dominant retinitis pigmentosa, most likely results in abnormal post-Golgi membrane formation and in an aberrant subcellular localization of rhodopsin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wee1 inactivates the Cdc2–cyclin B complex during interphase by phosphorylating Cdc2 on Tyr-15. The activity of Wee1 is highly regulated during the cell cycle. In frog egg extracts, it has been established previously that Xenopus Wee1 (Xwee1) is present in a hypophosphorylated, active form during interphase and undergoes down-regulation by extensive phosphorylation at M-phase. We report that Xwee1 is also regulated by association with 14-3-3 proteins. Binding of 14-3-3 to Xwee1 occurs during interphase, but not M-phase, and requires phosphorylation of Xwee1 on Ser-549. A mutant of Xwee1 (S549A) that cannot bind 14-3-3 is substantially less active than wild-type Xwee1 in its ability to phosphorylate Cdc2. This mutation also affects the intranuclear distribution of Xwee1. In cell-free kinase assays, Xchk1 phosphorylates Xwee1 on Ser-549. The results of experiments in which Xwee1, Xchk1, or both were immunodepleted from Xenopus egg extracts suggested that these two enzymes are involved in a common pathway in the DNA replication checkpoint response. Replacement of endogenous Xwee1 with recombinant Xwee1-S549A in egg extracts attenuated the cell cycle delay induced by addition of excess recombinant Xchk1. Taken together, these results suggest that Xchk1 and 14-3-3 proteins act together as positive regulators of Xwee1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The phylogenetic relationships among the three orders of modern amphibians (Caudata, Gymnophiona, and Anura) have been estimated based on both morphological and molecular evidence. Most morphological and paleontological studies of living and fossil amphibians support the hypothesis that salamanders and frogs are sister lineages (the Batrachia hypothesis) and that caecilians are more distantly related. Previous interpretations of molecular data based on nuclear and mitochondrial rRNA sequences suggested that salamanders and caecilians are sister groups to the exclusion of frogs. In an attempt to resolve this apparent conflict, the complete mitochondrial genomes of a salamander (Mertensiella luschani) and a caecilian (Typhlonectes natans) were determined (16,656 and 17,005 bp, respectively) and compared with previously published sequences from a frog (Xenopus laevis) and several other groups of vertebrates. Phylogenetic analyses of the mitochondrial data supported with high bootstrap values the monophyly of living amphibians with respect to other living groups of tetrapods, and a sister group relationship of salamanders and frogs. The lack of phylogenetically informative sites in the previous rRNA data sets (because of its shorter size and higher among-site rate variation) likely explains the discrepancy between our results and those based on previous molecular data. Strong support of the Batrachia hypothesis from both molecule- and morphology-based studies provides a robust phylogenetic framework that will be helpful to comparative studies among the three living orders of amphibians and will permit better understanding of the considerably divergent vertebral, brain, and digit developmental patterns found in frogs and salamanders.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The corticotropin-releasing factor (CRF) family of neuropeptides includes the mammalian peptides CRF, urocortin, and urocortin II, as well as piscine urotensin I and frog sauvagine. The mammalian peptides signal through two G protein-coupled receptor types to modulate endocrine, autonomic, and behavioral responses to stress, as well as a range of peripheral (cardiovascular, gastrointestinal, and immune) activities. The three previously known ligands are differentially distributed anatomically and have distinct specificities for the two major receptor types. Here we describe the characterization of an additional CRF-related peptide, urocortin III, in the human and mouse. In searching the public human genome databases we found a partial expressed sequence tagged (EST) clone with significant sequence identity to mammalian and fish urocortin-related peptides. By using primers based on the human EST sequence, a full-length human clone was isolated from genomic DNA that encodes a protein that includes a predicted putative 38-aa peptide structurally related to other known family members. With a human probe, we then cloned the mouse ortholog from a genomic library. Human and mouse urocortin III share 90% identity in the 38-aa putative mature peptide. In the peptide coding region, both human and mouse urocortin III are 76% identical to pufferfish urocortin-related peptide and more distantly related to urocortin II, CRF, and urocortin from other mammalian species. Mouse urocortin III mRNA expression is found in areas of the brain including the hypothalamus, amygdala, and brainstem, but is not evident in the cerebellum, pituitary, or cerebral cortex; it is also expressed peripherally in small intestine and skin. Urocortin III is selective for type 2 CRF receptors and thus represents another potential endogenous ligand for these receptors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Somatic sensation requires the conversion of physical stimuli into the depolarization of distal nerve endings. A single cRNA derived from sensory neurons renders Xenopus laevis oocytes mechanosensitive and is found to encode a P2Y1 purinergic receptor. P2Y1 mRNA is concentrated in large-fiber dorsal root ganglion neurons. In contrast, P2X3 mRNA is localized to small-fiber sensory neurons and produces less mechanosensitivity in oocytes. The frequency of touch-induced action potentials from frog sensory nerve fibers is increased by the presence of P2 receptor agonists at the peripheral nerve ending and is decreased by the presence of P2 antagonists. P2X-selective agents do not have these effects. The release of ATP into the extracellular space and the activation of peripheral P2Y1 receptors appear to participate in the generation of sensory action potentials by light touch.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The developing brain is particularly susceptible to lead toxicity; however, the cellular effects of lead on neuronal development are not well understood. The effect of exposure to nanomolar concentrations of lead on several parameters of the developing retinotectal system of frog tadpoles was tested. Lead severely reduced the area and branchtip number of retinal ganglion cell axon arborizations within the optic tectum at submicromolar concentrations. These effects of lead on neuronal growth are more dramatic and occur at lower exposure levels than previously reported. Lead exposure did not interfere with the development of retinotectal topography. The deficient neuronal growth does not appear to be secondary to impaired synaptic transmission, because concentrations of lead that stunted neuronal growth were lower than those required to block synaptic transmission. Subsequent treatment of lead-exposed animals with the chelating agent 2,3-dimercaptosuccinic acid completely reversed the effect of lead on neuronal growth. These studies indicate that impaired neuronal growth may be responsible in part for lead-induced cognitive deficits and that chelator treatment counteracts this effect.