922 resultados para Expert Opinions
Resumo:
Expert systems are built from knowledge traditionally elicited from the human expert. It is precisely knowledge elicitation from the expert that is the bottleneck in expert system construction. On the other hand, a data mining system, which automatically extracts knowledge, needs expert guidance on the successive decisions to be made in each of the system phases. In this context, expert knowledge and data mining discovered knowledge can cooperate, maximizing their individual capabilities: data mining discovered knowledge can be used as a complementary source of knowledge for the expert system, whereas expert knowledge can be used to guide the data mining process. This article summarizes different examples of systems where there is cooperation between expert knowledge and data mining discovered knowledge and reports our experience of such cooperation gathered from a medical diagnosis project called Intelligent Interpretation of Isokinetics Data, which we developed. From that experience, a series of lessons were learned throughout project development. Some of these lessons are generally applicable and others pertain exclusively to certain project types.
Resumo:
This work deals with quality level prediction in concrete structures through the helpful assistance of an expert system wich is able to apply reasoning to this field of structural engineering. Evidences, hypotheses and factors related to this human knowledge field have been codified into a Knowledge Base in terms of probabilities for the presence of either hypotheses or evidences,and conditional presence of both. Human experts in structural engineering and safety of structures gave their invaluable knowledge and assistance necessary when constructing the "computer knowledge body".
Resumo:
The design of a modern aircraft is based on three pillars: theoretical results, experimental test and computational simulations. As a results of this, Computational Fluid Dynamic (CFD) solvers are widely used in the aeronautical field. These solvers require the correct selection of many parameters in order to obtain successful results. Besides, the computational time spent in the simulation depends on the proper choice of these parameters. In this paper we create an expert system capable of making an accurate prediction of the number of iterations and time required for the convergence of a computational fluid dynamic (CFD) solver. Artificial neural network (ANN) has been used to design the expert system. It is shown that the developed expert system is capable of making an accurate prediction the number of iterations and time required for the convergence of a CFD solver.
Resumo:
Desde los años 60, crece en Europa y Estados Unidos la preocupación y la necesidad de mejorar los procesos de gerencia de los proyectos de construcción al volverse estos más complejos. Esto ha llevado a la continua aparición de nuevos profesionales desde la fecha citada hasta nuestros días. De ahí la complejidad de conocer las cualidades de cada uno de ellos, así como las funciones a realizar o la formación que deben tener para poder desarrollar el puesto de trabajo según el papel que desempeñan para cada actividad. Muchos agentes son los que pueden intervenir en la edificación, muchas son las funciones que llevan a cabo estos agentes, muchas son las habilidades que se necesitan para realizar estas misiones, y una buena gestión de la edificación es la que hay que desarrollar para lograr el gran éxito. El presente trabajo fin de máster, dirigido a arquitectos, arquitectos técnicos, ingenieros, abogados, economistas y todos los profesionales del sector inmobiliario y de la construcción, trata de resolver todas aquellas dudas sobre los diferentes sujetos que estarán presentes desde la definición del proyecto en la fase inicial hasta el final de la obra, pasando por las fases de pre-construcción, construcción y post-construcción. (ENGLISH VERSION) Since the 1960s, most construction projects have become more and more complex, and new concerns and necessities related to the management of a project have been on the rise in Europe and in the United States. Thence, the need for more specialized professionals in the field has become a common fact, as well as the inclusion of new curricular subjects in most building engineering studies. There are different agents that play a relevant role in a building project; some of them are expected to perform a highly specialized set of functions that require specific management skills for the work to be successful. This research work—aimed mainly at engineers, quantity surveyors, lawyers, economists, real estate and construction professionals—shows the major implications of the building construction process including both pre-tender/construction and post-tender/construction stages as far as the main expert agents are involved.
Resumo:
Neuronal morphology is a key feature in the study of brain circuits, as it is highly related to information processing and functional identification. Neuronal morphology affects the process of integration of inputs from other neurons and determines the neurons which receive the output of the neurons. Different parts of the neurons can operate semi-independently according to the spatial location of the synaptic connections. As a result, there is considerable interest in the analysis of the microanatomy of nervous cells since it constitutes an excellent tool for better understanding cortical function. However, the morphologies, molecular features and electrophysiological properties of neuronal cells are extremely variable. Except for some special cases, this variability makes it hard to find a set of features that unambiguously define a neuronal type. In addition, there are distinct types of neurons in particular regions of the brain. This morphological variability makes the analysis and modeling of neuronal morphology a challenge. Uncertainty is a key feature in many complex real-world problems. Probability theory provides a framework for modeling and reasoning with uncertainty. Probabilistic graphical models combine statistical theory and graph theory to provide a tool for managing domains with uncertainty. In particular, we focus on Bayesian networks, the most commonly used probabilistic graphical model. In this dissertation, we design new methods for learning Bayesian networks and apply them to the problem of modeling and analyzing morphological data from neurons. The morphology of a neuron can be quantified using a number of measurements, e.g., the length of the dendrites and the axon, the number of bifurcations, the direction of the dendrites and the axon, etc. These measurements can be modeled as discrete or continuous data. The continuous data can be linear (e.g., the length or the width of a dendrite) or directional (e.g., the direction of the axon). These data may follow complex probability distributions and may not fit any known parametric distribution. Modeling this kind of problems using hybrid Bayesian networks with discrete, linear and directional variables poses a number of challenges regarding learning from data, inference, etc. In this dissertation, we propose a method for modeling and simulating basal dendritic trees from pyramidal neurons using Bayesian networks to capture the interactions between the variables in the problem domain. A complete set of variables is measured from the dendrites, and a learning algorithm is applied to find the structure and estimate the parameters of the probability distributions included in the Bayesian networks. Then, a simulation algorithm is used to build the virtual dendrites by sampling values from the Bayesian networks, and a thorough evaluation is performed to show the model’s ability to generate realistic dendrites. In this first approach, the variables are discretized so that discrete Bayesian networks can be learned and simulated. Then, we address the problem of learning hybrid Bayesian networks with different kinds of variables. Mixtures of polynomials have been proposed as a way of representing probability densities in hybrid Bayesian networks. We present a method for learning mixtures of polynomials approximations of one-dimensional, multidimensional and conditional probability densities from data. The method is based on basis spline interpolation, where a density is approximated as a linear combination of basis splines. The proposed algorithms are evaluated using artificial datasets. We also use the proposed methods as a non-parametric density estimation technique in Bayesian network classifiers. Next, we address the problem of including directional data in Bayesian networks. These data have some special properties that rule out the use of classical statistics. Therefore, different distributions and statistics, such as the univariate von Mises and the multivariate von Mises–Fisher distributions, should be used to deal with this kind of information. In particular, we extend the naive Bayes classifier to the case where the conditional probability distributions of the predictive variables given the class follow either of these distributions. We consider the simple scenario, where only directional predictive variables are used, and the hybrid case, where discrete, Gaussian and directional distributions are mixed. The classifier decision functions and their decision surfaces are studied at length. Artificial examples are used to illustrate the behavior of the classifiers. The proposed classifiers are empirically evaluated over real datasets. We also study the problem of interneuron classification. An extensive group of experts is asked to classify a set of neurons according to their most prominent anatomical features. A web application is developed to retrieve the experts’ classifications. We compute agreement measures to analyze the consensus between the experts when classifying the neurons. Using Bayesian networks and clustering algorithms on the resulting data, we investigate the suitability of the anatomical terms and neuron types commonly used in the literature. Additionally, we apply supervised learning approaches to automatically classify interneurons using the values of their morphological measurements. Then, a methodology for building a model which captures the opinions of all the experts is presented. First, one Bayesian network is learned for each expert, and we propose an algorithm for clustering Bayesian networks corresponding to experts with similar behaviors. Then, a Bayesian network which represents the opinions of each group of experts is induced. Finally, a consensus Bayesian multinet which models the opinions of the whole group of experts is built. A thorough analysis of the consensus model identifies different behaviors between the experts when classifying the interneurons in the experiment. A set of characterizing morphological traits for the neuronal types can be defined by performing inference in the Bayesian multinet. These findings are used to validate the model and to gain some insights into neuron morphology. Finally, we study a classification problem where the true class label of the training instances is not known. Instead, a set of class labels is available for each instance. This is inspired by the neuron classification problem, where a group of experts is asked to individually provide a class label for each instance. We propose a novel approach for learning Bayesian networks using count vectors which represent the number of experts who selected each class label for each instance. These Bayesian networks are evaluated using artificial datasets from supervised learning problems. Resumen La morfología neuronal es una característica clave en el estudio de los circuitos cerebrales, ya que está altamente relacionada con el procesado de información y con los roles funcionales. La morfología neuronal afecta al proceso de integración de las señales de entrada y determina las neuronas que reciben las salidas de otras neuronas. Las diferentes partes de la neurona pueden operar de forma semi-independiente de acuerdo a la localización espacial de las conexiones sinápticas. Por tanto, existe un interés considerable en el análisis de la microanatomía de las células nerviosas, ya que constituye una excelente herramienta para comprender mejor el funcionamiento de la corteza cerebral. Sin embargo, las propiedades morfológicas, moleculares y electrofisiológicas de las células neuronales son extremadamente variables. Excepto en algunos casos especiales, esta variabilidad morfológica dificulta la definición de un conjunto de características que distingan claramente un tipo neuronal. Además, existen diferentes tipos de neuronas en regiones particulares del cerebro. La variabilidad neuronal hace que el análisis y el modelado de la morfología neuronal sean un importante reto científico. La incertidumbre es una propiedad clave en muchos problemas reales. La teoría de la probabilidad proporciona un marco para modelar y razonar bajo incertidumbre. Los modelos gráficos probabilísticos combinan la teoría estadística y la teoría de grafos con el objetivo de proporcionar una herramienta con la que trabajar bajo incertidumbre. En particular, nos centraremos en las redes bayesianas, el modelo más utilizado dentro de los modelos gráficos probabilísticos. En esta tesis hemos diseñado nuevos métodos para aprender redes bayesianas, inspirados por y aplicados al problema del modelado y análisis de datos morfológicos de neuronas. La morfología de una neurona puede ser cuantificada usando una serie de medidas, por ejemplo, la longitud de las dendritas y el axón, el número de bifurcaciones, la dirección de las dendritas y el axón, etc. Estas medidas pueden ser modeladas como datos continuos o discretos. A su vez, los datos continuos pueden ser lineales (por ejemplo, la longitud o la anchura de una dendrita) o direccionales (por ejemplo, la dirección del axón). Estos datos pueden llegar a seguir distribuciones de probabilidad muy complejas y pueden no ajustarse a ninguna distribución paramétrica conocida. El modelado de este tipo de problemas con redes bayesianas híbridas incluyendo variables discretas, lineales y direccionales presenta una serie de retos en relación al aprendizaje a partir de datos, la inferencia, etc. En esta tesis se propone un método para modelar y simular árboles dendríticos basales de neuronas piramidales usando redes bayesianas para capturar las interacciones entre las variables del problema. Para ello, se mide un amplio conjunto de variables de las dendritas y se aplica un algoritmo de aprendizaje con el que se aprende la estructura y se estiman los parámetros de las distribuciones de probabilidad que constituyen las redes bayesianas. Después, se usa un algoritmo de simulación para construir dendritas virtuales mediante el muestreo de valores de las redes bayesianas. Finalmente, se lleva a cabo una profunda evaluaci ón para verificar la capacidad del modelo a la hora de generar dendritas realistas. En esta primera aproximación, las variables fueron discretizadas para poder aprender y muestrear las redes bayesianas. A continuación, se aborda el problema del aprendizaje de redes bayesianas con diferentes tipos de variables. Las mixturas de polinomios constituyen un método para representar densidades de probabilidad en redes bayesianas híbridas. Presentamos un método para aprender aproximaciones de densidades unidimensionales, multidimensionales y condicionales a partir de datos utilizando mixturas de polinomios. El método se basa en interpolación con splines, que aproxima una densidad como una combinación lineal de splines. Los algoritmos propuestos se evalúan utilizando bases de datos artificiales. Además, las mixturas de polinomios son utilizadas como un método no paramétrico de estimación de densidades para clasificadores basados en redes bayesianas. Después, se estudia el problema de incluir información direccional en redes bayesianas. Este tipo de datos presenta una serie de características especiales que impiden el uso de las técnicas estadísticas clásicas. Por ello, para manejar este tipo de información se deben usar estadísticos y distribuciones de probabilidad específicos, como la distribución univariante von Mises y la distribución multivariante von Mises–Fisher. En concreto, en esta tesis extendemos el clasificador naive Bayes al caso en el que las distribuciones de probabilidad condicionada de las variables predictoras dada la clase siguen alguna de estas distribuciones. Se estudia el caso base, en el que sólo se utilizan variables direccionales, y el caso híbrido, en el que variables discretas, lineales y direccionales aparecen mezcladas. También se estudian los clasificadores desde un punto de vista teórico, derivando sus funciones de decisión y las superficies de decisión asociadas. El comportamiento de los clasificadores se ilustra utilizando bases de datos artificiales. Además, los clasificadores son evaluados empíricamente utilizando bases de datos reales. También se estudia el problema de la clasificación de interneuronas. Desarrollamos una aplicación web que permite a un grupo de expertos clasificar un conjunto de neuronas de acuerdo a sus características morfológicas más destacadas. Se utilizan medidas de concordancia para analizar el consenso entre los expertos a la hora de clasificar las neuronas. Se investiga la idoneidad de los términos anatómicos y de los tipos neuronales utilizados frecuentemente en la literatura a través del análisis de redes bayesianas y la aplicación de algoritmos de clustering. Además, se aplican técnicas de aprendizaje supervisado con el objetivo de clasificar de forma automática las interneuronas a partir de sus valores morfológicos. A continuación, se presenta una metodología para construir un modelo que captura las opiniones de todos los expertos. Primero, se genera una red bayesiana para cada experto y se propone un algoritmo para agrupar las redes bayesianas que se corresponden con expertos con comportamientos similares. Después, se induce una red bayesiana que modela la opinión de cada grupo de expertos. Por último, se construye una multired bayesiana que modela las opiniones del conjunto completo de expertos. El análisis del modelo consensuado permite identificar diferentes comportamientos entre los expertos a la hora de clasificar las neuronas. Además, permite extraer un conjunto de características morfológicas relevantes para cada uno de los tipos neuronales mediante inferencia con la multired bayesiana. Estos descubrimientos se utilizan para validar el modelo y constituyen información relevante acerca de la morfología neuronal. Por último, se estudia un problema de clasificación en el que la etiqueta de clase de los datos de entrenamiento es incierta. En cambio, disponemos de un conjunto de etiquetas para cada instancia. Este problema está inspirado en el problema de la clasificación de neuronas, en el que un grupo de expertos proporciona una etiqueta de clase para cada instancia de manera individual. Se propone un método para aprender redes bayesianas utilizando vectores de cuentas, que representan el número de expertos que seleccionan cada etiqueta de clase para cada instancia. Estas redes bayesianas se evalúan utilizando bases de datos artificiales de problemas de aprendizaje supervisado.
Resumo:
This paper proposes an automatic expert system for accuracy crop row detection in maize fields based on images acquired from a vision system. Different applications in maize, particularly those based on site specific treatments, require the identification of the crop rows. The vision system is designed with a defined geometry and installed onboard a mobile agricultural vehicle, i.e. submitted to vibrations, gyros or uncontrolled movements. Crop rows can be estimated by applying geometrical parameters under image perspective projection. Because of the above undesired effects, most often, the estimation results inaccurate as compared to the real crop rows. The proposed expert system exploits the human knowledge which is mapped into two modules based on image processing techniques. The first one is intended for separating green plants (crops and weeds) from the rest (soil, stones and others). The second one is based on the system geometry where the expected crop lines are mapped onto the image and then a correction is applied through the well-tested and robust Theil–Sen estimator in order to adjust them to the real ones. Its performance is favorably compared against the classical Pearson product–moment correlation coefficient.
Resumo:
Smart and green cities are hot topics in current research because people are becoming more conscious about their impact on the environment and the sustainability of their cities as the population increases. Many researchers are searching for mechanisms that can reduce power consumption and pollution in the city environment. This paper addresses the issue of public lighting and how it can be improved in order to achieve a more energy efficient city. This work is focused on making the process of turning the streetlights on and off more intelligent so that they consume less power and cause less light pollution. The proposed solution is comprised of a radar device and an expert system implemented on a low-cost platform based on a DSP. By analyzing the radar echo in both the frequency and time domains, the system is able to detect and identify objects moving in front of it. This information is used to decide whether or not the streetlight should be turned on. Experimental results show that the proposed system can provide hit rates over 80%, promising a good performance. In addition, the proposed solution could be useful in kind of other applications such as intelligent security and surveillance systems and home automation.
Resumo:
Neuronal morphology is hugely variable across brain regions and species, and their classification strategies are a matter of intense debate in neuroscience. GABAergic cortical interneurons have been a challenge because it is difficult to find a set of morphological properties which clearly define neuronal types. A group of 48 neuroscience experts around the world were asked to classify a set of 320 cortical GABAergic interneurons according to the main features of their three-dimensional morphological reconstructions. A methodology for building a model which captures the opinions of all the experts was proposed. First, one Bayesian network was learned for each expert, and we proposed an algorithm for clustering Bayesian networks corresponding to experts with similar behaviors. Then, a Bayesian network which represents the opinions of each group of experts was induced. Finally, a consensus Bayesian multinet which models the opinions of the whole group of experts was built. A thorough analysis of the consensus model identified different behaviors between the experts when classifying the interneurons in the experiment. A set of characterizing morphological traits for the neuronal types was defined by performing inference in the Bayesian multinet. These findings were used to validate the model and to gain some insights into neuron morphology.
Resumo:
La legislación existente en nuestro país, el Real Decreto 1620/200, de 7 de diciembre, por el que se establece el régimen jurídico de la reutilización de las aguas depuradas, no ha sido modificada en estos últimos años a pesar de las opiniones de expertos y operadores en el sentido que merece una revisión y mejora. Por ello se ha realizado un análisis pormenorizado de toda la legislación existente a nivel país y de otros países con amplia experiencia en reutilización para proponer mejoras o cambios en base a la información recopilada, tanto en estudios específicos de investigación como de los datos obtenidos de operadores y/o explotadores de estaciones regeneradoras de aguas residuales en España. Del estudio surgen algunas propuestas claras que se ponen a consideración de las autoridades. Se ha comprobado que no existen estudios suficientes relacionados a tipos de controles en estaciones de tratamiento terciario de aguas residuales en cada uno de los pasos de la línea de proceso, que permitan conocer las garantías de funcionamiento de dichas etapas y del proceso en su conjunto. De éste modo se podrían analizar todas las etapas por separado y comprobar si el funcionamiento en las condiciones previstas de diseño es apropiado, o si es posible mejorar la eficiencia a partir de estos datos intermedios, en lugar de los controles normales efectuados en la entrada y la salida realizados por los explotadores de las plantas existentes en el país. Existen, sin embargo, investigaciones y datos de casi todas las tecnologías existentes en el mercado relacionadas con la regeneración, lo cual ha permitido identificar sus ventajas e inconvenientes. La aplicación de un proceso de APPCC (Análisis de Peligros y Puntos de Control Críticos) a una planta existente ha permitido comprobar que es una herramienta práctica que permite gestionar la seguridad de un proceso de producción industrial como es el caso de un sistema de reutilización, por lo que se considera conveniente recomendar su aplicación siempre que sea posible. The existing legislation in our country, Royal Decree 1620/2007, of 7th December, establishing the legal regime for the reuse of treated water has not been modified in recent years despite expert and operators opinions in the sense that it deserves review and improvement. Therefore it has been conducted a detailed analysis of all existing legislation at country level and of other countries with extensive experience in water reuse to propose improvements or changes based on the information gathered both in specific research studies and the data obtained from operators and/or operators of regenerative sewage stations in Spain. As a result of these studies, some clear proposals are made to be considered by the authorities. It has been found that there are not enough studies related to types of controls in tertiary wastewater treatment plants, in each step of the process line, that provide insight into the performance guarantees of the mention stages and of the whole process. In this manner all stages could be analyzed separately and check if the operation in the design conditions envisaged is appropriate, or whether it is possible to improve efficiency taking in account these intermediate data, instead to the normal checks at entry and exit carried out by operators in existing plants in the country. There are, however, research and data from almost all technologies existing in the market related to regeneration, which has allowed identified its advantages and disadvantages. The application of a process of HACCP (hazard analysis and critical control points) to an existing plant has shown that it is a practical tool for managing the security of a process of industrial production as is the case of a water reuse system, so it is considered appropriate to recommend application whenever possible.
Resumo:
The Protein Information Resource, in collaboration with the Munich Information Center for Protein Sequences (MIPS) and the Japan International Protein Information Database (JIPID), produces the most comprehensive and expertly annotated protein sequence database in the public domain, the PIR-International Protein Sequence Database. To provide timely and high quality annotation and promote database interoperability, the PIR-International employs rule-based and classification-driven procedures based on controlled vocabulary and standard nomenclature and includes status tags to distinguish experimentally determined from predicted protein features. The database contains about 200 000 non-redundant protein sequences, which are classified into families and superfamilies and their domains and motifs identified. Entries are extensively cross-referenced to other sequence, classification, genome, structure and activity databases. The PIR web site features search engines that use sequence similarity and database annotation to facilitate the analysis and functional identification of proteins. The PIR-International databases and search tools are accessible on the PIR web site at http://pir.georgetown.edu/ and at the MIPS web site at http://www.mips.biochem.mpg.de. The PIR-International Protein Sequence Database and other files are also available by FTP.
Resumo:
To some extent, the genetic theory of adaptive evolution in bacteria is a simple extension of that developed for sexually reproducing eukaryotes. In other, fundamental ways, the process of adaptive evolution in bacteria is quantitatively and qualitatively different from that of organisms for which recombination is an integral part of the reproduction process. In this speculative and opinionated discussion, we explore these differences. In particular, we consider (i) how, as a consequence of the low rates of recombination, “ordinary” chromosomal gene evolution in bacteria is different from that in organisms where recombination is frequent and (ii) the fundamental role of the horizontal transmission of genes and accessory genetic elements as sources of variation in bacteria. We conclude with speculations about the evolution of accessory elements and their role in the adaptive evolution of bacteria.
Resumo:
Research focusing on mental toughness development and high risk sport is limited to one examination of elite gymnasts' perceptions. Coaches have acknowledged that mental toughness is important to performance success, while admitting they do not know effective development strategies. The aim of the current research is to address both these concerns by employing a grounded theory approach to ascertain elite diving coaches perceptions of mental toughness development and what mental toughness is. Seven diving coaches volunteered and were interviewed for an average of 49 minutes. They all coached an athlete that participated either in the world championships or Olympic games since 2008. Participants reported that mental toughness was the ability of a diver to perform a movement in a crucial moment that requires focus, extending beyond their comfort zone, overcoming fear, and never giving up. Mentaltoughness may not be the appropriate term due to its lack of multicultural sensitivity. Participants felt that dealing with adversity was something divers would have to constantly process. Mental toughness can be developed by the coach, the environment, or individual athlete. Unique attributes specific to divers were an awareness of self and a distinct level of knowing what the athlete was going to do. More research needs to be conducted to determine if these concepts can be generalized to other high risk sports. Future research could help establish a valid quantitative measure of mental toughness development.