953 resultados para Exciton emission
Resumo:
The Microwave Emission Model of Layered Snowpacks (MEMLS) was originally developed for microwave emissions of snowpacks in the frequency range 5–100 GHz. It is based on six-flux theory to describe radiative transfer in snow including absorption, multiple volume scattering, radiation trapping due to internal reflection and a combination of coherent and incoherent superposition of reflections between horizontal layer interfaces. Here we introduce MEMLS3&a, an extension of MEMLS, which includes a backscatter model for active microwave remote sensing of snow. The reflectivity is decomposed into diffuse and specular components. Slight undulations of the snow surface are taken into account. The treatment of like- and cross-polarization is accomplished by an empirical splitting parameter q. MEMLS3&a (as well as MEMLS) is set up in a way that snow input parameters can be derived by objective measurement methods which avoid fitting procedures of the scattering efficiency of snow, required by several other models. For the validation of the model we have used a combination of active and passive measurements from the NoSREx (Nordic Snow Radar Experiment) campaign in Sodankylä, Finland. We find a reasonable agreement between the measurements and simulations, subject to uncertainties in hitherto unmeasured input parameters of the backscatter model. The model is written in Matlab and the code is publicly available for download through the following website: http://www.iapmw.unibe.ch/research/projects/snowtools/memls.html.
Resumo:
AIM To evaluate the diagnostic value (sensitivity, specificity) of positron emission mammography (PEM) in a single site non-interventional study using the maximum PEM uptake value (PUVmax). PATIENTS, METHODS In a singlesite, non-interventional study, 108 patients (107 women, 1 man) with a total of 151 suspected lesions were scanned with a PEM Flex Solo II (Naviscan) at 90 min p.i. with 3.5 MBq 18F-FDG per kg of body weight. In this ROI(region of interest)-based analysis, maximum PEM uptake value (PUV) was determined in lesions, tumours (PUVmaxtumour), benign lesions (PUVmaxnormal breast) and also in healthy tissues on the contralateral side (PUVmaxcontralateral breast). These values were compared and contrasted. In addition, the ratios of PUVmaxtumour / PUVmaxcontralateral breast and PUVmaxnormal breast / PUVmaxcontralateral breast were compared. The image data were interpreted independently by two experienced nuclear medicine physicians and compared with histology in cases of suspected carcinoma. RESULTS Based on a criteria of PUV>1.9, 31 out of 151 lesions in the patient cohort were found to be malignant (21%). A mean PUVmaxtumour of 3.78 ± 2.47 was identified in malignant tumours, while a mean PUVmaxnormal breast of 1.17 ± 0.37 was reported in the glandular tissue of the healthy breast, with the difference being statistically significant (p < 0.001). Similarly, the mean ratio between tumour and healthy glandular tissue in breast cancer patients (3.15 ± 1.58) was found to be significantly higher than the ratio for benign lesions (1.17 ± 0.41, p < 0.001). CONCLUSION PEM is capable of differentiating breast tumours from benign lesions with 100% sensitivity along with a high specificity of 96%, when a threshold of PUVmax >1.9 is applied.
Resumo:
PURPOSE Our main objective was to prospectively determine the prognostic value of [(18)F]fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) after two cycles of rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone given every 14 days (R-CHOP-14) under standardized treatment and PET evaluation criteria. PATIENTS AND METHODS Patients with any stage of diffuse large B-cell lymphoma were treated with six cycles of R-CHOP-14 followed by two cycles of rituximab. PET/CT examinations were performed at baseline, after two cycles (and after four cycles if the patient was PET-positive after two cycles), and at the end of treatment. PET/CT examinations were evaluated locally and by central review. The primary end point was event-free survival at 2 years (2-year EFS). RESULTS Median age of the 138 evaluable patients was 58.5 years with a WHO performance status of 0, 1, or 2 in 56%, 36%, or 8% of the patients, respectively. By local assessment, 83 PET/CT scans (60%) were reported as positive and 55 (40%) as negative after two cycles of R-CHOP-14. Two-year EFS was significantly shorter for PET-positive compared with PET-negative patients (48% v 74%; P = .004). Overall survival at 2 years was not significantly different, with 88% for PET-positive versus 91% for PET-negative patients (P = .46). By using central review and the Deauville criteria, 2-year EFS was 41% versus 76% (P < .001) for patients who had interim PET/CT scans after two cycles of R-CHOP-14 and 24% versus 72% (P < .001) for patients who had PET/CT scans at the end of treatment. CONCLUSION Our results confirmed that an interim PET/CT scan has limited prognostic value in patients with diffuse large B-cell lymphoma homogeneously treated with six cycles of R-CHOP-14 in a large prospective trial. At this point, interim PET/CT scanning is not ready for clinical use to guide treatment decisions in individual patients.
Resumo:
CONTEXT Radiolabelled choline positron emission tomography has changed the management of prostate cancer patients. However, new emerging radiopharmaceutical agents, like radiolabelled prostate specific membrane antigen, and new promising hybrid imaging will begin new challenges in the diagnostic field. OBJECTIVE The continuous evolution in nuclear medicine has led to the improvement in the detection of recurrent prostate cancer (PCa), particularly distant metastases. New horizons have been opened for radiolabelled choline positron emission tomography (PET)/computed tomography (CT) as a guide for salvage therapy or for the assessment of systemic therapies. In addition, new tracers and imaging tools have been recently tested, providing important information for the management of PCa patients. Herein we discuss: (1) the available evidence in literature on radiolabelled choline PET and their recent indications, (2) the role of alternative radiopharmaceutical agents, and (3) the advantages of a recent hybrid imaging device (PET/magnetic resonance imaging) in PCa. EVIDENCE ACQUISITION Data from recently published (2010-2015), original articles concerning the role of choline PET/CT, new emerging radiotracers, and a new imaging device are analysed. This review is reported according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. EVIDENCE SYNTHESIS In the restaging phase, the detection rate of choline PET varies between 4% and 97%, mainly depending on the site of recurrence and prostate-specific antigen levels. Both 68gallium (68Ga)-prostate specific membrane antigen and 18F-fluciclovine are shown to be more accurate in the detection of recurrent disease as compared with radiolabelled choline PET/CT. Particularly, Ga68-PSMA has a detection rate of 50% and 68%, respectively for prostate-specific antigen levels < 0.5ng/ml and 0.5-2ng/ml. Moreover, 68Ga- PSMA PET/magnetic resonance imaging demonstrated a particularly higher accuracy in detecting PCa than PET/CT. New tracers, such as radiolabelled bombesin or urokinase-type plasminogen activator receptor, are promising, but few data in clinical practice are available today. CONCLUSIONS Some limitations emerge from the published papers, both for radiolabelled choline PET/CT and also for new radiopharmaceutical agents. Efforts are still needed to enhance the impact of published data in the world of oncology, in particular when new radiopharmaceuticals are introduced into the clinical arena. PATIENT SUMMARY In the present review, the authors summarise the last evidences in clinical practice for the assessment of prostate cancer, by using nuclear medicine modalities, like positron emission tomography/computed tomography and positron emission tomography/magnetic resonance imaging.
Resumo:
Bromoform (CHBr3) is one important precursor of atmospheric reactive bromine species that are involved in ozone depletion in the troposphere and stratosphere. In the open ocean bromoform production is linked to phytoplankton that contains the enzyme bromoperoxidase. Coastal sources of bromoform are higher than open ocean sources. However, open ocean emissions are important because the transfer of tracers into higher altitude in the air, i.e. into the ozone layer, strongly depends on the location of emissions. For example, emissions in the tropics are more rapidly transported into the upper atmosphere than emissions from higher latitudes. Global spatio-temporal features of bromoform emissions are poorly constrained. Here, a global three-dimensional ocean biogeochemistry model (MPIOM-HAMOCC) is used to simulate bromoform cycling in the ocean and emissions into the atmosphere using recently published data of global atmospheric concentrations (Ziska et al., 2013) as upper boundary conditions. Our simulated surface concentrations of CHBr3 match the observations well. Simulated global annual emissions based on monthly mean model output are lower than previous estimates, including the estimate by Ziska et al. (2013), because the gas exchange reverses when less bromoform is produced in non-blooming seasons. This is the case for higher latitudes, i.e. the polar regions and northern North Atlantic. Further model experiments show that future model studies may need to distinguish different bromoform-producing phytoplankton species and reveal that the transport of CHBr3 from the coast considerably alters open ocean bromoform concentrations, in particular in the northern sub-polar and polar regions.
Resumo:
Production pathways of the prominent volatile organic halogen compound methyl iodide (CH3I) are not fully understood. Based on observations, production of CH3I via photochemical degradation of organic material or via phytoplankton production has been proposed. Additional insights could not be gained from correlations between observed biological and environmental variables or from biogeochemical modeling to identify unambiguously the source of methyl iodide. In this study, we aim to address this question of source mechanisms with a three-dimensional global ocean general circulation model including biogeochemistry (MPIOM-HAMOCC (MPIOM - Max Planck Institute Ocean Model HAMOCC - HAMburg Ocean Carbon Cycle model)) by carrying out a series of sensitivity experiments. The simulated fields are compared with a newly available global data set. Simulated distribution patterns and emissions of CH3I differ largely for the two different production pathways. The evaluation of our model results with observations shows that, on the global scale, observed surface concentrations of CH3I can be best explained by the photochemical production pathway. Our results further emphasize that correlations between CH3I and abiotic or biotic factors do not necessarily provide meaningful insights concerning the source of origin. Overall, we find a net global annual CH3I air-sea flux that ranges between 70 and 260 Gg/yr. On the global scale, the ocean acts as a net source of methyl iodide for the atmosphere, though in some regions in boreal winter, fluxes are of the opposite direction (from the atmosphere to the ocean).