956 resultados para Examinations.
Resumo:
NlmCategory="UNASSIGNED">Video-assisted thoracoscopic surgery (VATS) is currently a routinely performed procedure for the management of early non small cell lung cancer. The oncological results of VATS in terms of local recurrence and overall survival are equivalent or superior to those of conventional thoracotomy with lower morbidity and hospital stay. In the field of pulmonary metastasectomy, current guidelines support a thoracotomy approach in order to properly palpate the lung and detect nodules too small to be identified on standard radiological examinations (typically less than 5mm in diameter). However, the oncological and clinical significance of these millimetric nodules is not known. This has led some thoracic surgeons to rethink the approach of solitary pulmonary metastasectomy: because of improvements in thin slice helical CT-scans, some support a VATS approach for solitary pulmonary nodules without formal bimanual palpation and suggest this allows equivalent oncological results and decreased surgical morbidity.
Resumo:
BACKGROUND: For free-breathing cardiovascular magnetic resonance (CMR), the self-navigation technique recently emerged, which is expected to deliver high-quality data with a high success rate. The purpose of this study was to test the hypothesis that self-navigated 3D-CMR enables the reliable assessment of cardiovascular anatomy in patients with congenital heart disease (CHD) and to define factors that affect image quality. METHODS: CHD patients ≥2 years-old and referred for CMR for initial assessment or for a follow-up study were included to undergo a free-breathing self-navigated 3D CMR at 1.5T. Performance criteria were: correct description of cardiac segmental anatomy, overall image quality, coronary artery visibility, and reproducibility of great vessels diameter measurements. Factors associated with insufficient image quality were identified using multivariate logistic regression. RESULTS: Self-navigated CMR was performed in 105 patients (55% male, 23 ± 12y). Correct segmental description was achieved in 93% and 96% for observer 1 and 2, respectively. Diagnostic quality was obtained in 90% of examinations, and it increased to 94% if contrast-enhanced. Left anterior descending, circumflex, and right coronary arteries were visualized in 93%, 87% and 98%, respectively. Younger age, higher heart rate, lower ejection fraction, and lack of contrast medium were independently associated with reduced image quality. However, a similar rate of diagnostic image quality was obtained in children and adults. CONCLUSION: In patients with CHD, self-navigated free-breathing CMR provides high-resolution 3D visualization of the heart and great vessels with excellent robustness.
Resumo:
Background: The public health burden of coronary artery disease (CAD) is important. Perfusion cardiac magnetic resonance (CMR) is generally accepted to detect and monitor CAD. Few studies have so far addressed its costs and costeffectiveness. Objectives: To compare in a large CMR registry the costs of a CMR-guided strategy vs two hypothetical invasive strategies for the diagnosis and the treatment of patients with suspected CAD. Methods: In 3'647 patients with suspected CAD included prospectively in the EuroCMR Registry (59 centers; 18 countries) costs were calculated for diagnostic examinations, revascularizations as well as for complication management over a 1-year follow-up. Patients with ischemia-positive CMR underwent an invasive X-ray coronary angiography (CXA) and revascularization at the discretion of the treating physician (=CMR+CXA strategy). Ischemia was found in 20.9% of patients and 17.4% of them were revascularized. In ischemia-negative patients by CMR, cardiac death and non-fatal myocardial infarctions occurred in 0.38%/y. In a hypothetical invasive arm the costs were calculated for an initial CXA followed by FFR testing in vessels with ≥50% diameter stenoses (=CXA+FFR strategy). To model this hypothetical arm, the same proportion of ischemic patients and outcome was assumed as for the CMR+CXA strategy. The coronary stenosis - FFR relationship reported in the literature was used to derive the proportion of patients with ≥50% diameter stenoses (Psten) in the study cohort. The costs of a CXA-only strategy were also calculated. Calculations were performed from a third payer perspective for the German, UK, Swiss, and US healthcare systems.
Resumo:
The question of how to quantify insufficient coping behavior under chronic stress is of major clinical relevance. In fact, chronic stress increasingly dominates modern work conditions and can affect nearly every system of the human body, as suggested by physical, cognitive, affective and behavioral symptoms. Since freshmen students experience constantly high levels of stress due to tight schedules and frequent examinations, we carried out a 3-center study of 1,303 students from Italy, Spain and Argentina in order to develop socioculturally independent means for quantifying coping behavior. The data analysis relied on 2 self-report questionnaires: the Coping Strategies Inventory (COPE) for the assessment of coping behavior and the Zurich Health Questionnaire which assesses consumption behavior and general health dimensions. A neural network approach was used to determine the structural properties inherent in the COPE instrument. Our analyses revealed 2 highly stable, socioculturally independent scales that reflected basic coping behavior in terms of the personality traits activity-passivity and defeatism-resilience. This replicated previous results based on Swiss and US-American data. The percentage of students exhibiting insufficient coping behavior was very similar across the study sites (11.5-18.0%). Given their stability and validity, the newly developed scales enable the quantification of basic coping behavior in a cost-efficient and reliable way, thus clearing the way for the early detection of subjects with insufficient coping skills under chronic stress who may be at risk of physical or mental health problems.
Resumo:
Työn teoriaosuudessa käsitellään lujia hitsattavia teräksiä sekä niiden hitsauksessa huomioitavia erityispiirteitä. Työssä esitellään hitsattavuuden arviointiin kehitettyjä teoreettisia menetelmiä sekä otetaan kantaa hitsauksen suoritustekniikkaan ja lisäainevalintaan. Myös lujien terästen hitsauksessa tyypilliset hitsausvirheet on käsitelty tässä työssä. Työn kokeellisessa osassa selvitettiin metsäteknologian tuotteita valmistavan metalliyrityksen käyttämien lujien terästen hitsattavuus ja hitsauksen esivalmistelujen tarpeellisuus. Kokeelliseen osioon kuului myös sopivan lisäainelangan valinta sekä tarkempaan tarkasteluun valitun esimerkkituotteen hitsien laadun selvittäminen. Tutkimuksissa käytettyjä menetelmiä olivat makro- ja mikrohietutkimus, hitsausliitoksen poikittainen vetokoe, Vickersin kovuuskoe ja murtokoe. Tarkasteluissa peilautuu myös hitsauksen automatisoinnin vaikutukset lujien terästen hitsaukseen. Kokeellisessa osiossa huomattiin nuorrutettujen terästen pehmeneminen liian suurella lämmöntuonnilla. Termomekaanisesti valssatut teräkset ovat paremmin hitsattavissa kuin nuorrutetut ja karkaistut teräkset. Kyseessä olevassa yrityksessä hitsattavien materiaalien paksuudet ovat pääsääntöisesti niin ohuita, ettei korotettua työlämpötilaa tarvita. Alilujat lisäaineet soveltuvat hitsauslisäaineeksi tuotantokäyttöön muutamia tuotekohtaisia poikkeuksia lukuun ottamatta.
Resumo:
BACKGROUND: Coronary artery disease (CAD) continues to be one of the top public health burden. Perfusion cardiovascular magnetic resonance (CMR) is generally accepted to detect CAD, while data on its cost effectiveness are scarce. Therefore, the goal of the study was to compare the costs of a CMR-guided strategy vs two invasive strategies in a large CMR registry. METHODS: In 3'647 patients with suspected CAD of the EuroCMR-registry (59 centers/18 countries) costs were calculated for diagnostic examinations (CMR, X-ray coronary angiography (CXA) with/without FFR), revascularizations, and complications during a 1-year follow-up. Patients with ischemia-positive CMR underwent an invasive CXA and revascularization at the discretion of the treating physician (=CMR + CXA-strategy). In the hypothetical invasive arm, costs were calculated for an initial CXA and a FFR in vessels with ≥50 % stenoses (=CXA + FFR-strategy) and the same proportion of revascularizations and complications were applied as in the CMR + CXA-strategy. In the CXA-only strategy, costs included those for CXA and for revascularizations of all ≥50 % stenoses. To calculate the proportion of patients with ≥50 % stenoses, the stenosis-FFR relationship from the literature was used. Costs of the three strategies were determined based on a third payer perspective in 4 healthcare systems. RESULTS: Revascularizations were performed in 6.2 %, 4.5 %, and 12.9 % of all patients, patients with atypical chest pain (n = 1'786), and typical angina (n = 582), respectively; whereas complications (=all-cause death and non-fatal infarction) occurred in 1.3 %, 1.1 %, and 1.5 %, respectively. The CMR + CXA-strategy reduced costs by 14 %, 34 %, 27 %, and 24 % in the German, UK, Swiss, and US context, respectively, when compared to the CXA + FFR-strategy; and by 59 %, 52 %, 61 % and 71 %, respectively, versus the CXA-only strategy. In patients with typical angina, cost savings by CMR + CXA vs CXA + FFR were minimal in the German (2.3 %), intermediate in the US and Swiss (11.6 % and 12.8 %, respectively), and remained substantial in the UK (18.9 %) systems. Sensitivity analyses proved the robustness of results. CONCLUSIONS: A CMR + CXA-strategy for patients with suspected CAD provides substantial cost reduction compared to a hypothetical CXA + FFR-strategy in patients with low to intermediate disease prevalence. However, in the subgroup of patients with typical angina, cost savings were only minimal to moderate.
Resumo:
BACKGROUND: In 2007, a first survey on undergraduate palliative care teaching in Switzerland has revealed major heterogeneity of palliative care content, allocation of hours and distribution throughout the 6 year curriculum in Swiss medical faculties. This second survey in 2012/13 has been initiated as part of the current Swiss national strategy in palliative care (2010 - 2015) to serve as a longitudinal monitoring instrument and as a basis for redefinition of palliative care learning objectives and curriculum planning in our country. METHODS: As in 2007, a questionnaire was sent to the deans of all five medical faculties in Switzerland in 2012. It consisted of eight sections: basic background information, current content and hours in dedicated palliative care blocks, current palliative care content in other courses, topics related to palliative care presented in other courses, recent attempts at improving palliative care content, palliative care content in examinations, challenges, and overall summary. Content analysis was performed and the results matched with recommendations from the EAPC for undergraduate training in palliative medicine as well as with recommendations from overseas countries. RESULTS: There is a considerable increase in palliative care content, academic teaching staff and hours in all medical faculties compared to 2007. No Swiss medical faculty reaches the range of 40 h dedicated specifically to palliative care as recommended by the EAPC. Topics, teaching methods, distribution throughout different years and compulsory attendance still differ widely. Based on these results, the official Swiss Catalogue of Learning Objectives (SCLO) was complemented with 12 new learning objectives for palliative and end of life care (2013), and a national basic script for palliative care was published (2015). CONCLUSION: Performing periodic surveys of palliative care teaching at national medical faculties has proven to be a useful tool to adapt the national teaching framework and to improve the recognition of palliative medicine as an integral part of medical training.
Resumo:
Demonstration of survival and outcome of progressive multifocal leukoencephalopathy (PML) in a 56-year-old patient with common variable immunodeficiency, consisting of severe hypogammaglobulinemia and CD4+ T lymphocytopenia, during continuous treatment with mirtazapine (30 mg/day) and mefloquine (250 mg/week) over 23 months. Regular clinical examinations including Rankin scale and Barthel index, nine-hole peg and box and block tests, Berg balance, 10-m walking tests, and Montreal Cognitive Assessment (MoCA) were done. Laboratory diagnostics included complete blood count and JC virus (JCV) concentration in cerebrospinal fluid (CSF). The noncoding control region (NCCR) of JCV, important for neurotropism and neurovirulence, was sequenced. Repetitive MRI investigated the course of brain lesions. JCV was detected in increasing concentrations (peak 2568 copies/ml CSF), and its NCCR was genetically rearranged. Under treatment, the rearrangement changed toward the archetype sequence, and later JCV DNA became undetectable. Total brain lesion volume decreased (8.54 to 3.97 cm(3)) and atrophy increased. Barthel (60 to 100 to 80 points) and Rankin (4 to 2 to 3) scores, gait stability, and box and block (7, 35, 25 pieces) and nine-hole peg (300, 50, 300 s) test performances first improved but subsequently worsened. Cognition and walking speed remained stable. Despite initial rapid deterioration, the patient survived under continuous treatment with mirtazapine and mefloquine even though he belongs to a PML subgroup that is usually fatal within a few months. This course was paralleled by JCV clones with presumably lower replication capability before JCV became undetectable. Neurological deficits were due to PML lesions and progressive brain atrophy.
Resumo:
Long recognized as the standard general reference in the field, this completely revised edition of Grainger and Allison's Diagnostic Radiology provides all the information that a trainee needs to master to successfully take their professional certification examinations as well as providing the practicing radiologist with a refresher on topics that may have been forgotten. Organized along an organ and systems basis, this resource covers all diagnostic imaging modalities in an integrated, correlative fashion and focuses on those topics that really matter to a trainee radiologist in the initial years of training
Resumo:
La tomodensitométrie (TDM) est une technique d'imagerie pour laquelle l'intérêt n'a cessé de croitre depuis son apparition au début des années 70. De nos jours, l'utilisation de cette technique est devenue incontournable, grâce entre autres à sa capacité à produire des images diagnostiques de haute qualité. Toutefois, et en dépit d'un bénéfice indiscutable sur la prise en charge des patients, l'augmentation importante du nombre d'examens TDM pratiqués soulève des questions sur l'effet potentiellement dangereux des rayonnements ionisants sur la population. Parmi ces effets néfastes, l'induction de cancers liés à l'exposition aux rayonnements ionisants reste l'un des risques majeurs. Afin que le rapport bénéfice-risques reste favorable au patient il est donc nécessaire de s'assurer que la dose délivrée permette de formuler le bon diagnostic tout en évitant d'avoir recours à des images dont la qualité est inutilement élevée. Ce processus d'optimisation, qui est une préoccupation importante pour les patients adultes, doit même devenir une priorité lorsque l'on examine des enfants ou des adolescents, en particulier lors d'études de suivi requérant plusieurs examens tout au long de leur vie. Enfants et jeunes adultes sont en effet beaucoup plus sensibles aux radiations du fait de leur métabolisme plus rapide que celui des adultes. De plus, les probabilités des évènements auxquels ils s'exposent sont également plus grandes du fait de leur plus longue espérance de vie. L'introduction des algorithmes de reconstruction itératifs, conçus pour réduire l'exposition des patients, est certainement l'une des plus grandes avancées en TDM, mais elle s'accompagne de certaines difficultés en ce qui concerne l'évaluation de la qualité des images produites. Le but de ce travail est de mettre en place une stratégie pour investiguer le potentiel des algorithmes itératifs vis-à-vis de la réduction de dose sans pour autant compromettre la qualité du diagnostic. La difficulté de cette tâche réside principalement dans le fait de disposer d'une méthode visant à évaluer la qualité d'image de façon pertinente d'un point de vue clinique. La première étape a consisté à caractériser la qualité d'image lors d'examen musculo-squelettique. Ce travail a été réalisé en étroite collaboration avec des radiologues pour s'assurer un choix pertinent de critères de qualité d'image. Une attention particulière a été portée au bruit et à la résolution des images reconstruites à l'aide d'algorithmes itératifs. L'analyse de ces paramètres a permis aux radiologues d'adapter leurs protocoles grâce à une possible estimation de la perte de qualité d'image liée à la réduction de dose. Notre travail nous a également permis d'investiguer la diminution de la détectabilité à bas contraste associée à une diminution de la dose ; difficulté majeure lorsque l'on pratique un examen dans la région abdominale. Sachant que des alternatives à la façon standard de caractériser la qualité d'image (métriques de l'espace Fourier) devaient être utilisées, nous nous sommes appuyés sur l'utilisation de modèles d'observateurs mathématiques. Nos paramètres expérimentaux ont ensuite permis de déterminer le type de modèle à utiliser. Les modèles idéaux ont été utilisés pour caractériser la qualité d'image lorsque des paramètres purement physiques concernant la détectabilité du signal devaient être estimés alors que les modèles anthropomorphes ont été utilisés dans des contextes cliniques où les résultats devaient être comparés à ceux d'observateurs humain, tirant profit des propriétés de ce type de modèles. Cette étude a confirmé que l'utilisation de modèles d'observateurs permettait d'évaluer la qualité d'image en utilisant une approche basée sur la tâche à effectuer, permettant ainsi d'établir un lien entre les physiciens médicaux et les radiologues. Nous avons également montré que les reconstructions itératives ont le potentiel de réduire la dose sans altérer la qualité du diagnostic. Parmi les différentes reconstructions itératives, celles de type « model-based » sont celles qui offrent le plus grand potentiel d'optimisation, puisque les images produites grâce à cette modalité conduisent à un diagnostic exact même lors d'acquisitions à très basse dose. Ce travail a également permis de clarifier le rôle du physicien médical en TDM: Les métriques standards restent utiles pour évaluer la conformité d'un appareil aux requis légaux, mais l'utilisation de modèles d'observateurs est inévitable pour optimiser les protocoles d'imagerie. -- Computed tomography (CT) is an imaging technique in which interest has been quickly growing since it began to be used in the 1970s. Today, it has become an extensively used modality because of its ability to produce accurate diagnostic images. However, even if a direct benefit to patient healthcare is attributed to CT, the dramatic increase in the number of CT examinations performed has raised concerns about the potential negative effects of ionising radiation on the population. Among those negative effects, one of the major risks remaining is the development of cancers associated with exposure to diagnostic X-ray procedures. In order to ensure that the benefits-risk ratio still remains in favour of the patient, it is necessary to make sure that the delivered dose leads to the proper diagnosis without producing unnecessarily high-quality images. This optimisation scheme is already an important concern for adult patients, but it must become an even greater priority when examinations are performed on children or young adults, in particular with follow-up studies which require several CT procedures over the patient's life. Indeed, children and young adults are more sensitive to radiation due to their faster metabolism. In addition, harmful consequences have a higher probability to occur because of a younger patient's longer life expectancy. The recent introduction of iterative reconstruction algorithms, which were designed to substantially reduce dose, is certainly a major achievement in CT evolution, but it has also created difficulties in the quality assessment of the images produced using those algorithms. The goal of the present work was to propose a strategy to investigate the potential of iterative reconstructions to reduce dose without compromising the ability to answer the diagnostic questions. The major difficulty entails disposing a clinically relevant way to estimate image quality. To ensure the choice of pertinent image quality criteria this work was continuously performed in close collaboration with radiologists. The work began by tackling the way to characterise image quality when dealing with musculo-skeletal examinations. We focused, in particular, on image noise and spatial resolution behaviours when iterative image reconstruction was used. The analyses of the physical parameters allowed radiologists to adapt their image acquisition and reconstruction protocols while knowing what loss of image quality to expect. This work also dealt with the loss of low-contrast detectability associated with dose reduction, something which is a major concern when dealing with patient dose reduction in abdominal investigations. Knowing that alternative ways had to be used to assess image quality rather than classical Fourier-space metrics, we focused on the use of mathematical model observers. Our experimental parameters determined the type of model to use. Ideal model observers were applied to characterise image quality when purely objective results about the signal detectability were researched, whereas anthropomorphic model observers were used in a more clinical context, when the results had to be compared with the eye of a radiologist thus taking advantage of their incorporation of human visual system elements. This work confirmed that the use of model observers makes it possible to assess image quality using a task-based approach, which, in turn, establishes a bridge between medical physicists and radiologists. It also demonstrated that statistical iterative reconstructions have the potential to reduce the delivered dose without impairing the quality of the diagnosis. Among the different types of iterative reconstructions, model-based ones offer the greatest potential, since images produced using this modality can still lead to an accurate diagnosis even when acquired at very low dose. This work has clarified the role of medical physicists when dealing with CT imaging. The use of the standard metrics used in the field of CT imaging remains quite important when dealing with the assessment of unit compliance to legal requirements, but the use of a model observer is the way to go when dealing with the optimisation of the imaging protocols.
Resumo:
The evaluation of forensic evidence can occur at any level within the hierarchy of propositions depending on the question being asked and the amount and type of information that is taken into account within the evaluation. Commonly DNA evidence is reported given propositions that deal with the sub-source level in the hierarchy, which deals only with the possibility that a nominated individual is a source of DNA in a trace (or contributor to the DNA in the case of a mixed DNA trace). We explore the use of information obtained from examinations, presumptive and discriminating tests for body fluids, DNA concentrations and some case circumstances within a Bayesian network in order to provide assistance to the Courts that have to consider propositions at source level. We use a scenario in which the presence of blood is of interest as an exemplar and consider how DNA profiling results and the potential for laboratory error can be taken into account. We finish with examples of how the results of these reports could be presented in court using either numerical values or verbal descriptions of the results.
Resumo:
AbstractObjective:Longitudinal study with B-mode ultrasonography and Doppler ultrasonography of maternal kidneys and liver in low-risk pregnancy, to establish and quantify normality parameters, correlating them with physiological changes.Materials and Methods:Twenty-five pregnant women were assessed and selected to participate in the study, each of them undergoing four examinations at the first, second, third trimesters and postpartum.Results:Findings during pregnancy were the following: increased renal volume, pyelocaliceal dilatation with incidence of 45.4% in the right kidney, and 9% in the left kidney; nephrolithiasis, 18.1% in the right kidney, 13.6% in the left kidney. With pyelocaliceal dilatation, mean values for resistivity index were: 0.68 for renal arteries; 0.66 for segmental arteries; 0.64 for interlobar arteries; 0.64 for arcuate arteries. Without pyelocaliceal dilatation, 0.67 for renal arteries; 0.64 for segmental arteries; 0.63 for interlobar arteries; and 0.61 for arcuate arteries. Portal vein flow velocities presented higher values in pregnancy, with mean value for maximum velocity of 28.9 cm/s, and 22.6 cm/s postpartum. The waveform pattern of the right hepatic vein presented changes persisting in the postpartum period in 31.8% of the patients. Cholelithiasis was observed in 18.1% of the patients.Conclusion:Alterations in renal volume, pyelocaliceal dilatation, nephrolithiasis, cholelithiasis, changes in portal vein flow velocity, alterations in waveform pattern of the right hepatic vein, proved to be significant.
Resumo:
OBJECTIVE: The aim of this article was to apply psychometric theory to develop and validate a visual grading scale for assessing the visual perception of digital image quality anteroposterior (AP) pelvis. METHODS: Psychometric theory was used to guide scale development. Seven phantom and seven cadaver images of visually and objectively predetermined quality were used to help assess scale reliability and validity. 151 volunteers scored phantom images, and 184 volunteers scored cadaver images. Factor analysis and Cronbach's alpha were used to assess scale validity and reliability. RESULTS: A 24-item scale was produced. Aggregated mean volunteer scores for each image correlated with the rank order of the visually and objectively predetermined image qualities. Scale items had good interitem correlation (≥0.2) and high factor loadings (≥0.3). Cronbach's alpha (reliability) revealed that the scale has acceptable levels of internal reliability for both phantom and cadaver images (α = 0.8 and 0.9, respectively). Factor analysis suggested that the scale is multidimensional (assessing multiple quality themes). CONCLUSION: This study represents the first full development and validation of a visual image quality scale using psychometric theory. It is likely that this scale will have clinical, training and research applications. ADVANCES IN KNOWLEDGE: This article presents data to create and validate visual grading scales for radiographic examinations. The visual grading scale, for AP pelvis examinations, can act as a validated tool for future research, teaching and clinical evaluations of image quality.
Resumo:
PURPOSE: Orbital tumor recurrence is a rare but serious complication in children with retinoblastoma, leading to a high risk of metastasis and death. Therefore, we assume that these recurrences have to be detected and treated as early as possible. Preliminary studies used magnetic resonance imaging (MRI) to evaluate postsurgical findings in the orbit. In this study, we assessed the diagnostic accuracy of high-resolution MRI to detect orbital tumor recurrence in children with retinoblastoma in a large study cohort. DESIGN: Consecutive retrospective study (2007-2013) assessing MRI findings after enucleation. PARTICIPANTS: A total of 103 MRI examinations of 55 orbits (50 children, 27 male/23 female, mean age 16.3±12.4 months) with a median time of 8 months (range, 0-93) after enucleation for retinoblastoma. METHODS: High-resolution MRI using orbital surface coils was performed on 1.5 Tesla MRI systems to assess abnormal orbital findings. MAIN OUTCOME MEASURES: Five European experts in retinoblastoma imaging evaluated the MRI examinations regarding the presence of abnormal orbital gadolinium enhancement and judged them as "definitive tumor," "suspicious of tumor," "postsurgical condition/scar formation," or "without pathologic findings." The findings were correlated to histopathology (if available), MRI, and clinical follow-up. RESULTS: Abnormal orbital enhancement was a common finding after enucleation (100% in the first 3 months after enucleation, 64.3% >3 years after enucleation). All histopathologically confirmed tumor recurrences (3 of 55 orbits, 5.5%) were correctly judged as "definitive tumor" in MRI. Two orbits from 2 children rated as "suspicious of tumor" received intravenous chemotherapy without histopathologic confirmation; further follow-up (67 and 47 months) revealed no sign of tumor recurrence. In 90.2%, no tumor was suspected on MRI, which was clinically confirmed during follow-up (median follow-up after enucleation, 45 months; range, 8-126). CONCLUSIONS: High-resolution MRI with orbital surface coils may reliably distinguish between common postsurgical contrast enhancement and orbital tumor recurrence, and therefore may be a useful tool to evaluate orbital tumor recurrence after enucleation in children with retinoblastoma. We recommend high-resolution MRI as a potential screening tool for the orbit in children with retinoblastoma to exclude tumor recurrence, especially in high-risk patients within the critical first 2 years after enucleation.
Resumo:
This is a study concerned with determining the efficiency in training high school chemistry teachers in the Federal University of Mato Grosso do Sul. The analysis was based on the following information, i.e., the opinion of the students who were enrolled in the course, university entrance examinations and academic performance. We reach the conclusion that the goal was partially achieved in training high schools' teachers. Further suggestions and strategies are proposed in order to overcome the problems.