965 resultados para Exact computation
Resumo:
Fostering young children's mental computation capacity is essential to support their numeracy development. Debate continues as to whether young children should be explicitly taught strategies for mental computation, or be afforded the freedom to develop their own. This paper reports on teaching experiments with two groups of students in their first year of schooling: those considered 'at-risk', and those deemed mathematically advanced. Both groups made considerable learning gains as a result of instruction. Importantly, the gains of the at-risk group are likely to renew both their own, and their teacher's confidence in their ability to learn. In this paper, the instructional programs are documented, highlighting the influence of instruction upon the children's development.
Resumo:
In this thesis we study at perturbative level correlation functions of Wilson loops (and local operators) and their relations to localization, integrability and other quantities of interest as the cusp anomalous dimension and the Bremsstrahlung function. First of all we consider a general class of 1/8 BPS Wilson loops and chiral primaries in N=4 Super Yang-Mills theory. We perform explicit two-loop computations, for some particular but still rather general configuration, that confirm the elegant results expected from localization procedure. We find notably full consistency with the multi-matrix model averages, obtained from 2D Yang-Mills theory on the sphere, when interacting diagrams do not cancel and contribute non-trivially to the final answer. We also discuss the near BPS expansion of the generalized cusp anomalous dimension with L units of R-charge. Integrability provides an exact solution, obtained by solving a general TBA equation in the appropriate limit: we propose here an alternative method based on supersymmetric localization. The basic idea is to relate the computation to the vacuum expectation value of certain 1/8 BPS Wilson loops with local operator insertions along the contour. Also these observables localize on a two-dimensional gauge theory on S^2, opening the possibility of exact calculations. As a test of our proposal, we reproduce the leading Luscher correction at weak coupling to the generalized cusp anomalous dimension. This result is also checked against a genuine Feynman diagram approach in N=4 super Yang-Mills theory. Finally we study the cusp anomalous dimension in N=6 ABJ(M) theory, identifying a scaling limit in which the ladder diagrams dominate. The resummation is encoded into a Bethe-Salpeter equation that is mapped to a Schroedinger problem, exactly solvable due to the surprising supersymmetry of the effective Hamiltonian. In the ABJ case the solution implies the diagonalization of the U(N) and U(M) building blocks, suggesting the existence of two independent cusp anomalous dimensions and an unexpected exponentation structure for the related Wilson loops.
Resumo:
The Vapnik-Chervonenkis (VC) dimension is a combinatorial measure of a certain class of machine learning problems, which may be used to obtain upper and lower bounds on the number of training examples needed to learn to prescribed levels of accuracy. Most of the known bounds apply to the Probably Approximately Correct (PAC) framework, which is the framework within which we work in this paper. For a learning problem with some known VC dimension, much is known about the order of growth of the sample-size requirement of the problem, as a function of the PAC parameters. The exact value of sample-size requirement is however less well-known, and depends heavily on the particular learning algorithm being used. This is a major obstacle to the practical application of the VC dimension. Hence it is important to know exactly how the sample-size requirement depends on VC dimension, and with that in mind, we describe a general algorithm for learning problems having VC dimension 1. Its sample-size requirement is minimal (as a function of the PAC parameters), and turns out to be the same for all non-trivial learning problems having VC dimension 1. While the method used cannot be naively generalised to higher VC dimension, it suggests that optimal algorithm-dependent bounds may improve substantially on current upper bounds.
Resumo:
For neural networks with a wide class of weight priors, it can be shown that in the limit of an infinite number of hidden units, the prior over functions tends to a gaussian process. In this article, analytic forms are derived for the covariance function of the gaussian processes corresponding to networks with sigmoidal and gaussian hidden units. This allows predictions to be made efficiently using networks with an infinite number of hidden units and shows, somewhat paradoxically, that it may be easier to carry out Bayesian prediction with infinite networks rather than finite ones.
Resumo:
Training Mixture Density Network (MDN) configurations within the NETLAB framework takes time due to the nature of the computation of the error function and the gradient of the error function. By optimising the computation of these functions, so that gradient information is computed in parameter space, training time is decreased by at least a factor of sixty for the example given. Decreased training time increases the spectrum of problems to which MDNs can be practically applied making the MDN framework an attractive method to the applied problem solver.
Resumo:
We derive a mean field algorithm for binary classification with Gaussian processes which is based on the TAP approach originally proposed in Statistical Physics of disordered systems. The theory also yields an approximate leave-one-out estimator for the generalization error which is computed with no extra computational cost. We show that from the TAP approach, it is possible to derive both a simpler 'naive' mean field theory and support vector machines (SVM) as limiting cases. For both mean field algorithms and support vectors machines, simulation results for three small benchmark data sets are presented. They show 1. that one may get state of the art performance by using the leave-one-out estimator for model selection and 2. the built-in leave-one-out estimators are extremely precise when compared to the exact leave-one-out estimate. The latter result is a taken as a strong support for the internal consistency of the mean field approach.
Resumo:
The fluid–particle interaction inside a 150 g/h fluidised bed reactor is modelled. The biomass particle is injected into the fluidised bed and the momentum transport from the fluidising gas and fluidised sand is modelled. The Eulerian approach is used to model the bubbling behaviour of the sand, which is treated as a continuum. The particle motion inside the reactor is computed using drag laws, dependent on the local volume fraction of each phase, according to the literature. FLUENT 6.2 has been used as the modelling framework of the simulations with a completely revised drag model, in the form of user defined function (UDF), to calculate the forces exerted on the particle as well as its velocity components. 2-D and 3-D simulations are tested and compared. The study is the first part of a complete pyrolysis model in fluidised bed reactors.
Resumo:
A method for the exact solution of the Bragg-difrraction problem for a photorefractive grating in sillenite crystals based on Pauli matrices is proposed. For the two main optical configurations explicit analytical expressions are found for the diffraction efficiency and the polarization of the scattered wave. The exact solution is applied to a detailed analysis of a number of particular cases. For the known limiting cases there is agreement with the published results.
Resumo:
We address the question of how to communicate among distributed processes valuessuch as real numbers, continuous functions and geometrical solids with arbitrary precision, yet efficiently. We extend the established concept of lazy communication using streams of approximants by introducing explicit queries. We formalise this approach using protocols of a query-answer nature. Such protocols enable processes to provide valid approximations with certain accuracy and focusing on certain locality as demanded by the receiving processes through queries. A lattice-theoretic denotational semantics of channel and process behaviour is developed. Thequery space is modelled as a continuous lattice in which the top element denotes the query demanding all the information, whereas other elements denote queries demanding partial and/or local information. Answers are interpreted as elements of lattices constructed over suitable domains of approximations to the exact objects. An unanswered query is treated as an error anddenoted using the top element. The major novel characteristic of our semantic model is that it reflects the dependency of answerson queries. This enables the definition and analysis of an appropriate concept of convergence rate, by assigning an effort indicator to each query and a measure of information content to eachanswer. Thus we capture not only what function a process computes, but also how a process transforms the convergence rates from its inputs to its outputs. In future work these indicatorscan be used to capture further computational complexity measures. A robust prototype implementation of our model is available.
Resumo:
The dynamics of Boolean networks (BN) with quenched disorder and thermal noise is studied via the generating functional method. A general formulation, suitable for BN with any distribution of Boolean functions, is developed. It provides exact solutions and insight into the evolution of order parameters and properties of the stationary states, which are inaccessible via existing methodology. We identify cases where the commonly used annealed approximation is valid and others where it breaks down. Broader links between BN and general Boolean formulas are highlighted.
Resumo:
We obtain the exact asymptotic result for the disorder-averaged probability distribution function for a random walk in a biased Sinai model and show that it is characterized by a creeping behavior of the displacement moments with time,